
WRspice Reference Manual

Whiteley Research Incorporated
456 Flora Vista Avenue
Sunnyvale, CA 94086

Release 3.2.20
September 24, 2012

c© Whiteley Research Incorporated, 2009.

WRspice is part of the XicTools software package for integrated circuit design from White-
ley Research Inc. WRspice was authored by S. R. Whiteley, with extensive adaptation of
the Berkeley SPICE3 program. This manual was prepared by Whiteley Research Inc., ac-
knowledging the material originally authored by the developers of SPICE3 in the Electrical
Engineering and Computer Sciences Department of the University of California, Berkeley.
Technical support for registered users of WRspice and other XicTools software is available via
electronic mail at support@wrcad.com, and by telephone at (408) 735-8973.

WRspice and subsidiary programs and utilities are offered as-is, and the suitability of these
programs for any purpose or application must be established by the user, as neither Whiteley
Research Inc., or the University of California can imply or guarantee such suitability.

ii

This page intentionally left blank.

Contents

1 Introduction to WRspice 1

1.1 History of WRspice . 1

1.2 WRspice Overview . 5

1.3 Types of Analysis . 8

1.4 Program Control . 11

1.5 Post-Processing and Run Control . 11

1.6 Introduction to Interactive Simulation . 12

2 WRspice Input Format 19

2.1 Input Format . 19

2.1.1 Case Sensitivity . 20

2.1.2 Numeric Values . 21

2.2 Variable Expansion in Input . 22

2.3 Title, Comments, Job Separation, and Inclusions . 22

2.3.1 Title Line . 22

2.3.2 Comments . 22

2.3.3 .title Line . 23

2.3.4 .end Line . 23

2.3.5 .newjob Line . 23

2.3.6 .include or .inc Line . 24

2.3.7 .lib Line . 25

2.3.8 .mosmap Line . 26

2.4 Initialization . 27

2.4.1 .global Line . 27

2.4.2 .ic Line . 27

2.4.3 .nodeset Line . 28

2.4.4 .options Line . 28

2.4.5 .table Line . 30

2.4.6 .temp Line . 31

2.5 Parameters and Expressions . 31

iii

iv CONTENTS

2.5.1 Single-Quoted Expressions . 31

2.5.2 .param Line . 32

2.5.2.1 Pre-Defined Parameters . 33

2.5.3 .if, .elif, .else, and .endif Lines . 33

2.6 Subcircuits . 35

2.6.1 .subckt Line . 35

2.6.1.1 Subcircuit Expansion . 36

2.6.1.2 wrspice Mode . 37

2.6.1.3 spice3 Mode . 38

2.6.2 .ends Line . 38

2.6.3 Subcircuit Calls . 39

2.6.4 Subcircuit/Model Cache . 39

2.7 Analysis Specification . 40

2.7.1 .ac Line . 41

2.7.2 .dc Line . 42

2.7.3 .disto Line . 43

2.7.4 .noise Line . 45

2.7.5 .op Line . 46

2.7.6 .pz Line . 49

2.7.7 .sens Line . 49

2.7.8 .tf Line . 50

2.7.9 .tran Line . 50

2.8 Output Generation . 52

2.8.1 .save Line . 52

2.8.2 .print Line . 53

2.8.3 .plot Line . 53

2.8.4 .four Line . 54

2.8.5 .width Line . 54

2.9 Parameter Measurement . 54

2.9.1 .measure Line . 54

2.9.1.1 Point and Interval Specification 55

2.9.1.2 Measurements . 56

2.10 Control Script Execution . 58

2.10.1 .exec, .control, and .endc Lines . 58

2.10.2 .check, .checkall, .monte, and .noexec Lines 60

2.11 Verilog Interface . 61

2.11.1 .verilog, .endv Lines . 61

2.11.2 .adc Line . 61

CONTENTS v

2.12 Circuit Elements . 62

2.13 Device Models . 64

2.13.1 Analysis at Different Temperatures . 65

2.14 Passive Element Lines . 66

2.14.1 Capacitors . 66

2.14.2 Capacitor Model . 67

2.14.3 Inductors . 68

2.14.4 Coupled (Mutual) Inductors . 68

2.14.5 Resistors . 69

2.14.6 Resistor Model . 70

2.14.7 Switches . 71

2.14.8 Switch Model . 71

2.14.9 Transmission Lines (General) . 72

2.14.9.1 Model Level . 73

2.14.9.2 Electrical Characteristics . 73

2.14.9.3 Initial Conditions . 74

2.14.9.4 Timestep and Breakpoint Control 74

2.14.9.5 History List . 76

2.14.10 Transmission Line Model . 77

2.14.11 Uniform RC Line . 77

2.14.12 Uniform Distributed RC Model . 77

2.15 Voltage and Current Sources . 78

2.15.1 Device Expressions . 79

2.15.2 POLY Expressions . 84

2.15.3 Tran Functions . 85

2.15.3.1 Exponential . 87

2.15.3.2 Gaussian Random . 88

2.15.3.3 Interpolation . 88

2.15.3.4 Pulse . 89

2.15.3.5 Piecewise Linear . 90

2.15.3.6 Single-Frequency FM . 90

2.15.3.7 Sinusoidal . 91

2.15.3.8 Sinusoidal Pulse . 91

2.15.3.9 Table Reference . 92

2.15.4 Dependent Sources . 92

2.15.4.1 Voltage-Controlled Current Sources 93

2.15.4.2 Voltage-Controlled Voltage Sources 93

2.15.4.3 Current-Controlled Current Sources 94

vi CONTENTS

2.15.4.4 Current-Controlled Voltage Sources 95

2.16 Semiconductor Devices . 96

2.16.1 Junction Diodes . 97

2.16.2 Diode Model . 97

2.16.3 Bipolar Junction Transistors (BJTs) . 100

2.16.4 BJT Models (both NPN and PNP) . 100

2.16.5 Junction Field-Effect Transistors (JFETs) . 102

2.16.6 JFET Models (both N and P Channel) . 103

2.16.7 MESFETs . 104

2.16.8 MESFET Models (both N and P Channel) . 105

2.16.9 MOSFETs . 105

2.16.10 MOSFET Models (both N and P channel) . 106

2.16.10.1 MOS Default Values . 107

2.16.10.2 MOS Model Binning . 107

2.16.10.3 SPICE2/3 Legacy Models . 108

2.16.10.4 Imported MOS Models . 111

2.16.10.5 HSPICE MOS Level 49 Compatibility in WRspice 113

2.17 Superconductor Devices . 115

2.17.1 Josephson Junctions . 115

2.17.2 Josephson Junction Model . 116

3 The WRspice User Interface 119

3.1 Starting WRspice . 119

3.2 Environment Variables . 122

3.2.1 Unix/Linux . 122

3.2.2 Microsoft Windows . 123

3.2.3 WRspice Environment Variables . 123

3.3 Sparse Matrix Package . 126

3.4 Initialization Files . 127

3.4.1 The tbsetup Command . 128

3.5 The Tool Control Window . 129

3.6 Text Entry Windows . 132

3.6.1 Selections and Clipboards . 133

3.6.2 Single Line Key Bindings . 133

3.7 The Variable Setting Tools . 135

3.7.1 The Circuits Tool . 135

3.7.2 The Files Tool . 135

3.7.3 The Fonts Tool . 136

CONTENTS vii

3.7.4 The Plots Tool . 137

3.7.5 The Trace Tool . 137

3.7.6 The Variables Tool . 137

3.7.7 The Vectors Tool . 138

3.8 The File Manager . 138

3.9 The Text Editor . 140

3.9.1 Text Editor Key Bindings . 143

3.10 The Mail Client . 144

3.11 The Plot Panel . 145

3.11.1 Zooming in . 147

3.11.2 Text String Selection . 147

3.11.3 Trace Drag and Drop . 148

3.11.4 Multidimensional Traces . 148

3.11.5 Scale Icons . 149

3.11.6 Field Width Icons . 150

3.12 The Mplot Panel . 150

3.13 The Print Control Panel . 150

3.13.1 Print Drivers . 152

3.14 The WRspice Help System . 153

3.14.1 The HTML Viewer . 155

3.14.2 The Help Database . 158

3.14.3 Help System Forms Processing . 158

3.14.4 Help System Initialization File . 159

3.15 The WRspice Shell . 159

3.15.1 Command Line Editing . 159

3.15.2 Command Completion . 160

3.15.3 History Substitution . 160

3.15.4 Alias Substitution . 161

3.15.5 Global Substitution . 161

3.15.6 Quoting . 161

3.15.7 I/O Redirection . 162

3.15.8 Semicolon Termination . 162

3.15.9 Variables and Variable Substitution . 162

3.15.10 Commands and Scripts . 163

3.16 Plots, Vectors and Expressions . 165

3.16.1 Plots and Vectors . 165

3.16.1.1 The constants Plot . 166

3.16.2 Vector Characteristics . 166

viii CONTENTS

3.16.3 Vector Creation and Assignment . 167

3.16.4 Analysis Vectors and Access Mapping . 168

3.16.5 Special Vectors . 170

3.16.6 Vector Expressions . 171

3.16.7 Operators in Expressions . 172

3.16.8 Math Functions . 174

3.16.9 Expression Lists . 183

3.16.10 Set and Let . 184

3.17 Batch Mode . 187

3.17.1 Scripts and Batch Mode . 187

3.18 Loadable Device Modules and Verilog-A Support . 189

3.19 The WRspice Daemon and Remote SPICE Runs . 190

4 WRspice Commands 191

4.1 Control Structures . 193

4.1.1 The cdump Command . 196

4.1.2 The strcmp Command . 196

4.2 User Interface Setup Commands . 196

4.2.1 The mapkey Command . 196

4.2.2 The passwd Command . 198

4.2.3 The setcase Command . 198

4.2.4 The setfont Command . 198

4.2.5 The setrdb Command . 199

4.2.6 The update Command . 199

4.2.7 The wrupdate Command . 200

4.3 Shell Commands . 201

4.3.1 The alias Command . 201

4.3.2 The cd Command . 202

4.3.3 The echo Command . 202

4.3.4 The echof Command . 202

4.3.5 The history Command . 202

4.3.6 The pause Command . 203

4.3.7 The rehash Command . 203

4.3.8 The set Command . 203

4.3.9 The shell Command . 204

4.3.10 The shift Command . 204

4.3.11 The unalias Command . 204

4.3.12 The unset Command . 205

4.3.13 The usrset Command . 205

CONTENTS ix

4.4 Input and Output Commands . 205

4.4.1 The codeblock Command . 206

4.4.2 The dumpnodes Command . 207

4.4.3 The edit Command . 207

4.4.4 The listing Command . 208

4.4.5 The load Command . 208

4.4.6 The print Command . 208

4.4.7 The sced Command . 209

4.4.8 The source Command . 210

4.4.8.1 Implicit Source . 211

4.4.8.2 Input Format Notes . 211

4.4.9 The write Command . 212

4.4.10 The xeditor Command . 212

4.5 Simulation Control Commands . 213

4.5.1 The ac Command . 214

4.5.2 The alter Command . 215

4.5.3 The aspice Command . 215

4.5.4 The cache Command . 216

4.5.5 The check Command . 216

4.5.6 The dc Command . 221

4.5.7 The delete Command . 221

4.5.8 The destroy Command . 222

4.5.9 The devload Command . 222

4.5.10 The devls Command . 223

4.5.11 The devmod Command . 223

4.5.12 The disto Command . 224

4.5.13 The dump Command . 224

4.5.14 The free Command . 224

4.5.15 The jobs Command . 224

4.5.16 The loop Command . 224

4.5.17 The noise Command . 226

4.5.18 The op Command . 226

4.5.19 The pz Command . 227

4.5.20 The reset Command . 227

4.5.21 The resume Command . 227

4.5.22 The rhost Command . 227

4.5.23 The rspice Command . 228

4.5.24 The run Command . 228

x CONTENTS

4.5.25 The save Command . 228

4.5.26 The sens Command . 229

4.5.27 The setcirc Command . 230

4.5.28 The show Command . 230

4.5.29 The state Command . 231

4.5.30 The status Command . 231

4.5.31 The step Command . 231

4.5.32 The stop Command . 232

4.5.33 The tf Command . 232

4.5.34 The trace Command . 233

4.5.35 The tran Command . 233

4.5.36 The where Command . 233

4.6 Data Manipulation Commands . 233

4.6.1 The compose Command . 234

4.6.2 The cross Command . 235

4.6.3 The define Command . 235

4.6.4 The deftype Command . 236

4.6.5 The diff Command . 236

4.6.6 The display Command . 237

4.6.7 The fourier Command . 237

4.6.8 The let Command . 237

4.6.9 The linearize Command . 238

4.6.10 The pick Command . 239

4.6.11 The seed Command . 239

4.6.12 The setplot Command . 239

4.6.13 The setscale Command . 240

4.6.14 The settype Command . 241

4.6.15 The spec Command . 242

4.6.16 The undefine Command . 243

4.6.17 The unlet Command . 243

4.7 Graphical Output Commands . 243

4.7.1 The asciiplot Command . 244

4.7.2 The combine Command . 244

4.7.3 The hardcopy Command . 245

4.7.4 The iplot Command . 246

4.7.5 The mplot Command . 246

4.7.5.1 Selections . 247

4.7.6 The plot Command . 248

CONTENTS xi

4.7.7 The xgraph Command . 250

4.8 Miscellaneous Commands . 250

4.8.1 The bug Command . 251

4.8.2 The help Command . 251

4.8.3 The helpreset Command . 251

4.8.4 The qhelp Command . 252

4.8.5 The quit Command . 252

4.8.6 The rusage Command . 252

4.8.7 The version Command . 253

4.9 Variables . 253

4.9.1 Syntax Control Variables . 254

4.9.2 Shell Variables . 257

4.9.3 Command-Specific Variables . 259

4.9.4 Plot Variables . 263

4.9.5 Simulation Option Variables . 269

4.9.6 Unused Option Variables . 275

4.9.7 Batch Mode Option Variables . 276

4.9.8 Debugging Variables . 277

5 Margin Analysis 279

5.1 Operating Range Analysis . 279

5.2 Operating Range Analysis File Format . 285

5.2.1 Initializing Header . 286

5.2.2 Control Statements . 287

5.2.3 Circuit Description . 288

5.3 Example Operating Range Analysis Control File . 288

5.4 Monte Carlo Analysis . 293

5.5 Example Monte Carlo Analysis Control File . 294

5.6 Circuit Margin Optimization . 298

A File Formats 301

A.1 Rawfile Format . 301

A.2 Help Database Files . 303

A.2.1 Anchor Text . 307

A.2.2 .mozyrc File . 308

A.3 Example Data Files . 310

A.3.1 Circuit 1: Simple Differential Pair . 310

A.3.2 Circuit 2: MOS Output Characteristics . 310

A.3.3 Circuit 3: Simple RTL Inverter . 311

xii CONTENTS

A.3.4 Circuit 4: Four-Bit Adder . 311

A.3.5 Circuit 5: Transmission Line Inverter . 313

A.3.6 Circuit 6: Function and Table Demo . 313

A.3.7 Circuit 7: MOS Convergence Test . 314

A.3.8 Circuit 8: Verilog Pseudo-Random Sequence 316

A.3.9 Circuit 9: Josephson Junction I-V Curve . 317

A.3.10 Circuit 10: Josephson Gap Potential Modulation 317

B Utility Programs 319

B.1 The multidec Utility: Coupled Lossy Transmission Lines 319

B.2 The printtoraw Utility: Print to Rawfile Conversion 320

B.3 The proc2mod Utility: BSIM1 Model Generation . 320

B.4 The wrspiced Daemon: Remote SPICE Controller . 320

B.4.1 SPICE Server Configuration . 320

B.4.2 Starting the Daemon . 321

B.4.3 Client Configuration . 322

Chapter 1

Introduction to WRspice

1.1 History of WRspice

In the early days of radio, before the term “electronics” came into use, experimenters and scientists
(engineers designed bridges then) built circuits on whatever could be found that was appropriate. To
the dismay of otherwise supportive wives and mothers, one popular substrate was the wooden breadboard
found in most kitchens. The breadboard could be used to secure the tube sockets and other appendages
through use of screws. Thus, the term “breadboard” as a substrate for the building of electronic circuits
was born.

Breadboards, in one form or another, were used for the construction of all electronic prototype
circuits until the integrated circuit was invented in 1957. Even well afterward, the integrated circuit was
only another component on the breadboard. A new circuit could be easily (well, in principle) debugged,
modified, enhanced, or otherwise engineered toward perfection, as all points of the circuit were accessible
for testing and measurement.

After it became possible to put more than a small number of devices on an integrated circuit chip,
design of such chips became quite challenging. Obviously there was no opportunity to solder in new
components, or even probe the internal connections. The circuit had to be perfect as designed, or it
wouldn’t work properly. This is almost never the case for any but the simplest design for any but those
engineers with godlike intelligence (or luck). Clearly new tools and methods were needed.

The rescue came in the early 1970’s with the distribution of a computer program called SPICE
(Simulation Program for Integrated Circuit Engineering), developed at the University of California,
Berkeley. SPICE was a big (for its day) Fortran computer program, requiring the power of a mainframe
computer. A circuit was described in a certain syntax, which was punched into IBM computer cards.
The terminology this inspired persists to this day, as a line of SPICE input is often referred to as
a “card”, and a complete circuit description as a “deck”. In the bad old days, the engineer would
laboriously punch the cards, deliver them to the Computer Center, and receive the line printer output
a few hours later. It would generally take several iterations before the first page of output would not
say “Run Aborted...”. Old-time engineers abhorred this activity, which seemed suitable for office wimps
and students only. After a few years, and the advent of Tektronix direct view storage terminals, SPICE
became the preeminent means of designing not just integrated circuits, but the old-fashioned kind as
well.

SPICE is the progenitor of most circuit simulators currently in use. As the source code was available

1

2 CHAPTER 1. INTRODUCTION TO WRSPICE

for next to nothing, major organizations customized it for their own needs, and smoothed over some of
the rougher edges. It remains a numerically intensive program which can tax even the largest of today’s
computers.

Looking back, one can identify several important milestones in the accessibility of computer power
to the technically inclined masses. The first example was the ability to run the BASIC programming
language on a desktop computer, introduced in the late 1970’s with the Tektronix 4051. This 8-bit
machine with a built-in direct view storage tube for the first time allowed engineers and scientists to
have directly applicable computer power at their desk or laboratory bench. Also at about this time,
the UNIX operating system running on a VAX minicomputer became popular, largely supplanting the
ahead-of-their-time desktop computers. The VAX, although it was a mainframe, was very cost effective
as compared to the competition, and UNIX was a much more desirable operating system for scientific
and engineering purposes than others available. As with the 4051, it allowed computer accessibility at
the point of need, through use of a terminal. Although one could compile and run SPICE on a VAX,
it would tend to radically hog the VAX’s resources, bringing the system to an annoying unresponsive
state. As a consequence, many system managers forbade the use of SPICE on their machines, thus
SPICE users were still faced with interfacing to the company CDC or IBM or Cray, and the attendant
CPU time charges and batch mode operation. This situation persisted until the advent of the UNIX
workstation in the early 1980’s.

The original workstations were able to run SPICE, however the execution speed was quite slow by
modern standards. Still, they were often faster than a heavily loaded central mainframe, and although
expensive, were cost effective over time as compared to CPU charges for a mainframe. Many more engi-
neers were able to take advantage of the convenience of running their simulations on local workstations,
but due to the expense of the early workstations, the vast majority still had to slug it out with the
mainframe.

In the early 1980’s, the IBM personal computer came on the scene, and the real computer revolution
was at hand. However, these micros had severe limitations which prevented them from even loading
a program as large as SPICE, thus they offered no solution to engineers and scientists needing major
number crunching ability. They did, however, provide the ability to run BASIC (thanks to Bill Gates),
thus the personal computer began to displace the VAX in many instances, which had in turn displaced
the earliest desktop BASIC machines. As the number of machines grew, and thanks to the ingenuity
and manufacturing skills resident in the Far East, the cost of these desktop computers dropped rapidly.
Intel, designer and purveyor of the microprocessor which was at the heart of the IBM compatible PC,
made tons of money, which it wisely reinvested in newer and more capable models. However, the original
operating system, DOS, which ran universally on PC’s, was designed for and significantly incorporated
the limitations of the earliest microprocessors used in PC’s. These limitations have echos even today in
certain Microsoft products.

Thus, it was not with a bang but with a whimper that the first inexpensive desktop computers which
were capable of running SPICE and similar applications appeared. The Intel 386 microprocessor made
this possible. Unlike its predecessors, the 386 was a true 32 bit architecture, more powerful than a room
full of VAX hardware. It could easily sit on a desk, and cost, even in the early days, less than ten
thousand dollars for a fully equipped system. Alas, however, the 386 PC was like a Ferrari which was
deliberately equipped to emulate a Volkswagen. In order for the 386 to be compatible with its relatively
brain-dead predecessors, Intel included an emulation mode in the instruction set. In this mode, called
“real mode” by Intel, the 386 would behave as a somewhat faster version of earlier microprocessors, and
thus be compatible with DOS, and all of the software written for DOS. So thorough was the emulation
that even though the 386 could access 4 gigabits of memory directly, it was prevented from doing so
under DOS, so that games and other archaic programs which could possibly make use of the memory
address wrap around at 1 megabyte would perform as on earlier chips. To this day under DOS, the 386
and its descendants operate in this emulation mode, leaving the high-power native mode unused.

1.1. HISTORY OF WRSPICE 3

Intel assumed that a software vendor, meaning Microsoft, would soon produce a successor to DOS
that would unleash the full power of its new chips. Alas, Microsoft responded by ignoring this potential
in its own products, and appeared unsupportive of the exploitation of this power by other software
vendors. The size of the DOS market evidently influenced this business decision. However, thankfully,
a few small companies saw the potential. The first was Phar Lap, which by working directly with Intel
delivered a product known as a DOS extender. Intel and Phar Lap, and others, created a specification
under which extended DOS applications could coexist with regular DOS programs to a large extent.
The DOS extender allowed programs of arbitrary size to be compiled and executed in the 32-bit native
mode, which Intel termed “protected mode”. The term derives from the memory mapping which allows
all applications to have their own address space, and not clobber one another as they can under DOS. At
last, with this product and the right compiler, it was possible to run SPICE on a desktop PC, without
worrying about the memory limitations of DOS.

Microsoft eventually began to exploit some aspects of protected mode in the Windows product,
however, Windows was completely incompatible with extended DOS software at the time. Microsoft’s
objective was to influence developers of large applications to port to Windows, for which they made
available a $500.00 software development kit. Unfortunately Windows at that time had a memory
management system which most judged inadequate for applications such as SPICE, plus the support
for earlier versions of the Intel microprocessors in Windows added rather severe performance penalties.
Thus, in spite of the lack of Windows compatibility, the DOS extender market greatly expanded, and
several large commercial applications made use of this technology. DOS extenders were eventually being
included with many advanced compilers for “free”.

The DOS extenders extended the life span of DOS, however many limitations remained. One such
limitation was the lack of multi-tasking. Although some products such as Quarterdeck’s DesqView
provided some crude multitasking, clearly the time had arrived that a completely new operating system
was in order. These new operating systems began arriving in 1992. Vendors of advanced workstations,
such as Sun and Next, released versions of their UNIX-derived operating systems for Intel machines.
IBM introduced OS2 2.0, which was a 32-bit version of the OS2 operating system. Microsoft has released
the NT operating system, the first version of Windows that “really” used protected mode.

The contender that will probably most interest engineers and scientists is UNIX. This operating sys-
tem has a multi-decade history of use and improvement, with features and performance other operating
systems are striving to emulate. Proprietary operating systems based on UNIX are available from sev-
eral vendors, unfortunately, the cost, still quite high due to the licensing fee extracted by the copyright
holder, is a deterrent. However, UNIX clones, which operate the same but use non-copyrighted software,
are now widely available. The most popular of these are Linux and FreeBSD, both of which are available
on the Internet, and on CD for a small fee. Both provide the advanced user with a state-of-the-art
operating system, capable of running the plethora of applications available on the Internet. Linux has
become quite popular with the general technically-inclined public, while FreeBSD has found a large niche
as an Internet server, due to its reliability and speed. The running of massive applications on a desktop
computer (or even a laptop) is now a reality. A properly equipped Intel-compatible computer running
FreeBSD can be considered in every respect a ‘’Unix workstation”.

The original Fortran version of SPICE became widespread in the industry, and the creators of SPICE
dispersed and went on to new projects. As SPICE became more widely used on modern hardware, its
age began to show. Thus, the Berkeley groups set about to rewrite SPICE in a modern programming
language (C), and added new features and functionality. The result was SPICE3. Unlike the previous
versions of SPICE, SPICE3 was designed for interactive use. Furthermore, there were built-in features
for plotting output on-screen, as well as enhanced control over the run in progress. SPICE3 has to date
not received the widespread acceptance of its predecessor, mainly because is lacks the long history of
use. Early releases did have bugs, and certain features were lacking. The new code, being written in a
structured form, is relatively easy to modify, thus SPICE3 should become a standard in time, however

4 CHAPTER 1. INTRODUCTION TO WRSPICE

it is also competing with commercial versions of SPICE with many of the same features. The original
SPICE is still being shipped “as is”, and although it is robust and stable, there are parts of the code
that seemingly nobody understands.

In the early 1980’s, IBM had a large project to introduce a computer based on Josephson junction
logic. IBM used internal software to model these circuits, as SPICE was not designed to support Joseph-
son junctions. To provide a generally available software simulation tool for the analysis of Josephson
circuits, the Cryoelectronics group at Berkeley modified SPICE to include Josephson junctions. This
version of SPICE, JSPICE, was distributed by the Cryoelectronics group to the handful of interested
researchers. It quickly became the dominant tool for the simulation of these circuits (outside of IBM).

However, being based in SPICE, there were many aspects of the program which could stand im-
provement. Making these improvements would entail a complete rewriting of the SPICE code, a rather
formidable task with the Fortran source. Nevertheless, this was done in large measure for internal use
at Hypres, a small company engaged in superconductive electronics. The Hyspice program contained
a numerical core written in C, which was supported by much of the original SPICE Fortran. The al-
gorithms were modified to increase execution speed, while providing full support (rather than a tacked
on appendage) for Josephson junctions. The execution speed for Josephson circuits increased by about
a factor of 3–5 over the older JSPICE. Hyspice, however, was basically a batch mode program similar
to JSPICE, although it was designed to work with a graphics post-processor, which was a separate
application.

While entering a consulting and contract design practice, the author of Hyspice required a simulation
tool in order to pursue design activities. Hyspice was proprietary to a former employer, and was obsolete
anyway. JSPICE was even more obsolete. Thus, the author decided to modify SPICE3 to incorporate
a Josephson model. Further modifications were anticipated so as to provide uncompromising capability
and flexibility in the simulation of circuits using Josephson devices (without affecting the ability to
simulate conventional circuits). The resulting program, named JSPICE3, also had to be compatible
with the author’s 386 computer, yet be portable to other computers and operating systems should the
need arise. JSPICE3 evolved for several years. Along the way, new features were added, including a
schematic capture front-end. The program, still available from Whiteley Research Inc., currently runs
on most UNIX platforms, and is still being used in several industrial and educational facilities.

The author, once again getting restless, founded Whiteley Research Inc., in Sunnyvale, CA in 1996.
The company was to develop a new successor to JSPICE3, and other tools for schematic capture and
mask layout editing. After about one solid year of development, the XicTools toolset was announced.
The electrical circuit simulator, part of the core of the XicTools and known as WRspice, is a descendent
of the JSPICE3 program, and maintains full compatibility. The new program was migrated to the C++
programming language, for improved maintainability. Compatibility with the older SPICE program was
improved, as support for certain capabilities in SPICE, such as the POLY directive, that were missing
from SPICE3 were incorporated in WRspice. WRspice is more network-aware than its predecessors, and in
fact can control the dispatching of jobs to remote machines, so that repetitive operations, such as Monte
Carlo analysis, can exploit all of the machines in the user’s workgroup in parallel. Incidently, Monte
Carlo analysis is a new feature, too. Most of WRspice can be controlled graphically using point-and-click,
yet is prompt-line compatible with its predecessors.

At present (2011) and for some years, the gold-standard of full analog circuit simulators is HSPICEtm,
from Synopsys, Inc. Although “next generation” simulators from several vendors offer greater simulation
speed and support larger circuits, the variety and completeness of HSPICE device models, algorithm
flexibility, and usage history have made HSPICE the target simulator for most if not all process design
kits provided by foundry services. WRspice has evolved to incorporate some of the features of HSPICE,
such as parameters and single-quoted expressions, and device model extensions, to enable compatibility
with these design kits. Further, when there is a conflict between HSPICE and Berkeley SPICE defaults,

1.2. WRSPICE OVERVIEW 5

Graphical User Interface

Script Interpreter

Control Logic

�
�

�
�

�
�

�
�

�
�

�
�Schematic Capture Simulator Core Graphics Processor

Figure 1.1: Block diagram of the WRspice interactive circuit simulation tool.

such as in the assumed temperature, ¡i¿WRspice¡/i¿ has adopted the HSPICE conventions of late. This
is to conform to industry standards and current user expectations.

1.2 WRspice Overview

WRspice is a general-purpose circuit simulation program based on the venerable Berkeley SPICE (Sim-
ulation Program for Integrated Circuit Engineering). Although completely compatible with modern
implementations of Berkeley SPICE, and partially compatible with many commercial extensions, WR-

spice is an entirely new simulator written in the C++ programming language for ease of development
and maintenance with high performance. WRspice includes a built-in Verilog parser/simulator for mixed
analog/digital simulations. Verilog is a popular IEEE standard hardware description language used to
model digital logic circuits.

The overall structure of WRspice is shown in Figure 1.1. The core of the program is the numerical
analysis kernel, which actually solves the nonlinear circuit equations. This engine is controlled by a large
block of logic, which in turn is controlled through interaction with the keyboard and mouse, or under
control of a script file, or even under the control of another program. Repeated analyses, or analyses
dependent upon the outcome of simulating variables, can be set up through use of control language
scripts. Input can be entered as description files, or graphically from a schematic representation. Output
can be plotted on the screen, with powerful ability to manipulate and transform the data. The basic user
interface is very similar to a UNIX shell, with automatic command completion, a history mechanism,
and other features known to UNIX users.

WRspice uses the same basic algorithm to solve the nonlinear circuit equations as the original version
of SPICE. This is a modified nodal analysis, where a matrix A is determined, and a solution vector X is
obtained from an excitation vector B by inverting the expression AX = B. In WRspice, the coefficients
of X are node voltages, and branch currents of voltage sources and inductors. The coefficients of B
are independent source currents, plus terms which are added during the linearization process. The
coefficients of A are the small-signal admittance parameters of each device, plus factors which relate

6 CHAPTER 1. INTRODUCTION TO WRSPICE

branch currents to other circuit currents.

When the input description is submitted, WRspice sets the coefficients of the A matrix corresponding
to each device in the circuit. The B vector is also defined from knowledge of the source values. The
solution vector X is then obtained through an in-place LU decomposition of A. If all circuit elements
are linear, then X represents the output vector at the initial time point. However, in general, the
circuits contain nonlinear elements, and X at this point can be considered only an approximation to the
correct solution. This is because the A matrix contains only first order terms, and approximations of
the contributions of higher order terms have been added to the B vector. Initially, these “predictor”
terms represent an educated guess, however after solving for X, one can obtain more accurate estimates.
These better estimates are then incorporated into a new B vector, a new A matrix is obtained, and the
LU solution repeated. This iterative process continues until the predictor terms converge to a stable
value within an error tolerance. This process is known as Newton’s method.

A transient analysis solves the equation set at increments of time over the range specified by the
user. The time increment is determined by an algorithm which predicts the maximum allowable time step
given past behavior. Clearly, to simulate as rapidly as possible, the number of time steps and iterations
should be minimized. There are a number of variables which can be set in WRspice which affect this
behavior, and it is difficult to generalize from one circuit to another which are the best conditions. For
example, one can lengthen the average time step, however this will generally require more iterations at
each time step, which may lead to slower execution time. Also, one can reduce the number of iterations
by increasing the error tolerance, however this may result in excessive errors in the output.

Figure 1.2 below shows a flow diagram of the solution algorithm for transient analysis.

Some distributions of WRspice separate the device models from the program, placing them into a
dynamically linked library, which is loaded at run-time. In some cases, the user has control of this
library and can add or delete devices at will. All device-related information in this manual pertains to
the library supplied by Whiteley Research Inc. with the WRspice product. Local system administrators
should be consulted for information on locally-added devices.

The default device library contains the devices familiar from SPICE2 and SPICE3, including resistors,
capacitors, inductors, mutual inductors, independent and dependent voltage and current sources, lossy
and lossless transmission lines, switches, and the five most common semiconductor devices: diodes, BJTs,
JFETs, MESFETs, and MOSFETs, plus Josephson junctions, similar to the RSJ model first included
in SPICE2 by Jewett[11]. The original device models from SPICE3 are provided, along with a number
of third-party models, particularly for MOS transistors.

WRspice is based on JSPICE3, which in turn was derived from SPICE3F4, which developed from
SPICE2G.6. While WRspice is being developed to include new features, it will continue to support those
capabilities and models which remain in extensive use in the SPICE community.

WRspice is part of the XicTools design system from Whiteley Research, Inc. These tools are designed
to be modular, yet interactive. In particular, WRspice will work seamlessly with the Xic graphical
front-end for schematic capture, if the Xic program is present. Otherwise WRspice can be utilized in a
stand-alone mode. From the Xic graphical editor, WRspice can be called upon to perform simulations,
if WRspice is present. In this case, since it is used in a background mode, the WRspice binary can exist
on a remote machine.

The XicTools package has been developed primarily under BSD-4.4 Unix (FreeBSD), which is the
reference operating system. The tools have been ported to many other UNIX-type operating systems,
including Linux, Sun Solaris and SunOS 4.1.x, HPUX, and DEC Alpha-OSF. The tools are also now
available for Microsoft Windows.

Unix/Linux releases of WRspice use the GTK toolkit running on the X window system for the

1.2. WRSPICE OVERVIEW 7

Done

�
�

�
�

�
�

H
H

H
H

H
H

H
H

H
H

H
H

�
�

�
�

�
�

time = time + delta

�
�

�
�

�
�

H
H

H
H

H
H

H
H

H
H

H
H

�
�

�
�

�
�

Solve AX = B

LU dcmp A

Load A and B

Predict

Update Sources

time = 0

Read Input

?

?

?

?

?

?

?

?

?

?

-

�

time > end?

Converged?

N

N

Figure 1.2: Flow diagram of the algorithm used by WRspice.

8 CHAPTER 1. INTRODUCTION TO WRSPICE

graphical user interface. If X is not available, or if the user so chooses, WRspice will run without
graphics (other than crude ASCII-mode plots).

1.3 Types of Analysis

Like its predecessors, WRspice supports various forms of nonlinear dc, nonlinear transient, and linear ac
analyses.

DC Analysis
The dc analysis portion of WRspice determines the dc operating point of the circuit with inductors
shorted and capacitors opened. A dc analysis is automatically performed prior to a transient
analysis to determine the transient initial conditions, and prior to an ac small-signal analysis to
determine the linearized, small-signal models for nonlinear devices. The dc analysis can also be
used to generate dc transfer curves: a specified independent voltage or current source is stepped
over a user-specified range and the dc output variables are stored for each sequential source value.
In WRspice, dc analysis can be combined with other analysis types to generate a family of analysis
results representing data from each point of the dc analysis. The dc analysis is not available if
Josephson junctions are present in the circuit.

AC Analysis
The ac small-signal portion of WRspice computes the ac output variables as a function of frequency.
The program first computes the dc operating point of the circuit and determines linearized, small-
signal models for all of the nonlinear devices in the circuit. The resultant linear circuit is then
analyzed over a user-specified range of frequencies. The desired output of an ac small-signal
analysis is usually a transfer function (voltage gain, transimpedance, etc). If the circuit has only
one ac input, it is convenient to set that input to unity and zero phase, so that output variables
have the same value as the transfer function of the output variable with respect to the input.
The ac analysis can be combined with a dc sweep so that ac analysis is performed at each point
over a range of bias conditions. The ac analysis is not available on circuits containing Josephson
junctions.

Transient Analysis
The transient analysis portion of WRspice computes the transient output variables as a function

of time over a user-specified time interval. The initial conditions can be automatically determined
by a dc analysis. All sources which are not time dependent (for example, power supplies) are set
to their dc value. If Josephson junctions are present, or if the uic option is given, initial conditions
are assumed at the start of analysis rather than the result of the dc operating point analysis. With
Josephson junctions, all sources should start with zero output. Transient analysis can be combined
with a dc sweep so that the transient simulation is performed at each point over a range of bias
conditions.

Transfer Function Analysis
The transfer analysis portion of WRspice computes the dc or ac small signal transfer function,

input impedance, and output impedance of a network. For ac analysis, the dc operating point
is automatically determined through an operating point analysis. The transfer analysis can be
combined with a dc sweep so that the transfer function is computed at each point over a range of
bias conditions.

Pole-Zero Analysis
The pole-zero analysis portion of WRspice computes the poles and/or zeros in the small-signal

ac transfer function. The program first computes the dc operating point and then determines the

1.3. TYPES OF ANALYSIS 9

linearized, small-signal models for all the nonlinear devices in the circuit. This circuit is then used
to find the poles and zeros. Two types of transfer functions are allowed: one of the form

(output voltage)/(input voltage)

and the other of the form

(output voltage)/(input current).

These two types of transfer functions cover all the cases and one can find the poles/zeros of func-
tions like input/output impedance and voltage gain. The pole-zero analysis works with resistors,
capacitors, inductors, linear-controlled sources, independent sources, BJTs, MOSFETs, JFETs
and diodes. Transmission lines and Josephson junctions are not supported.

Distortion Analysis
The distortion analysis portion of WRspice computes steady-state harmonic and intermodulation
products for small input signal magnitudes. If signals of a single frequency are specified as the
input to the circuit, the complex values of the second and third harmonics are determined at every
point in the circuit. If there are signals of two frequencies input to the circuit, the analysis finds
the complex values of the circuit variables at the sum and difference of the input frequencies,
and at the difference of the smaller frequency from the second harmonic of the larger frequency.
Distortion analysis can be combined with a dc sweep so that distortion is analyzed at each point
over a range of bias conditions.

Distortion analysis is supported for the following nonlinear devices: diodes, bipolar transistors,
JFETs, MOS1-4, MESFETs. All linear devices are automatically supported by distortion analysis.
If there are switches present in the circuit, the analysis continues to be accurate provided the
switches do not change state under the small excitations used for distortion analysis.

Sensitivity Analysis
WRspice will calculate either the DC operating-point sensitivity or the AC small-signal sensitivity
of an output variable with respect to all circuit variables, including model parameters. WRspice

calculates the difference in an output variable (either a node voltage or a branch current) by
perturbing each parameter of each device independently. Since the method is a numerical approx-
imation, the results may demonstrate second-order effects in highly sensitive parameters, or may
fail to show very low but non-zero sensitivity. Further, since each variable is perturbed by a small
fraction of its value, zero-valued parameters are not analyzed (this has the benefit of reducing what
is usually a very large amount of data). Sensitivity analysis can be combined with a dc sweep so
that sensitivity can be analyzed at each point over a range of bias conditions.

Noise Analysis
The noise analysis portion of WRspice performs analysis of device-generated noise for the given

circuit. When provided with an input source and an output node, the analysis calculates the
noise contributions of each device (and each noise generator within the device) to the output node
voltage. It also calculates the level of input noise from the specified input source to generate
the equivalent output noise. This is done for every frequency point in a specified range — the
calculated value of the noise corresponds to the spectral density of the circuit variable viewed as
a stationary Gaussian stochastic process. Noise analysis can be combined with a dc sweep so that
noise can be computed at each point over a range of bias conditions.

After calculating the spectral densities, noise analysis integrates these values over the specified
frequency range to arrive at the total noise voltage/current (over this frequency range). This
calculated value corresponds to the variance of the circuit variable viewed as a stationary Gaussian
process.

10 CHAPTER 1. INTRODUCTION TO WRSPICE

Operating Range Analysis
WRspice has an integrated two-dimensional operating range analysis capability. The operating

range analysis mode is used in conjunction with the other analysis types, such as transient or ac. A
suitably configured source file and circuit description is evaluated over a one or two dimensional area
of parameter space, producing (optionally) an output file describing the results at each evaluated
point, or vectors giving the minimum and maximum values of the varying parameters for operation.
Results can be viewed graphically during or after simulation.

Monte Carlo Analysis
WRspice has a built-in facility for performing Monte Carlo analysis, where one or more circuit

variables are set according to a random distribution, and the circuit analyzed for functionality.
The file format and operation is very similar to operating range analysis.

Automated Looping
In WRspice, any analysis can be automatically repeated while stepping over a one or two dimen-

sional area of parameter space. Any circuit parameter may be varied.

Both dc and transient solutions are obtained by an iterative process which is terminated when both
of the following conditions hold:

1. The nonlinear branch currents converge to within a tolerance of 0.1 percent or 1 picoamp (1.0E-12
Amp), whichever is larger.

2. The node voltages converge to within a tolerance of 0.1 percent or 1 microvolt (1.0E-6 Volt),
whichever is larger.

Although the algorithm used in WRspice has been found to be very reliable, in some cases it will fail
to converge to a solution. When this failure occurs, the program will terminate the job.

Failure to converge in dc analysis is usually due to an error in specifying circuit connections, element
values, or model parameter values. Regenerative switching circuits or circuits with positive feedback
probably will not converge in the dc analysis unless the off option is used for some of the devices in the
feedback path, or the .nodeset card is used to force the circuit to converge to the desired state.

See the section describing operating point analysis (2.7.5) for a detailed description of the algorithms
and information on convergence issues.

WRspice runs can consume quite a bit of virtual memory, and it is possible to exceed machine limits
on many systems. The main consumer of memory is the data arrays from simulation runs. Each point is
a double precision number requiring 8 bytes. Typically, all nodes and branch currents are saved, though
this can be changed with the save command. One set of values is retained for each output increment.
For example, a circuit with 100 saved vectors running tran 1p 1n requires roughly 8 X 100 X 1000
bytes per run. This is allocated to the plot structure. By default, all plots are saved, so memory usage
increases with each run.

The maximum memory that can be used for plot data storage for a single run is set by the maxdata
variable. The Tool Control window displays memory statistics, and can be used to keep track of memory
in use.

The vectors are copied when a plot is produced (including iplots), thus this additional memory must
be available for plots to be displayed. In addition, iplots with a large number of data points (more than
about 10000) can noticeably slow the simulation run.

The free and destroy commands can be used to delete existing plots, making the memory available
for other purposes. The rusage command displays memory usage and memory limits. Note that once

1.4. PROGRAM CONTROL 11

WRspice obtains memory from the operating system, on many systems this memory is never returned.
Thus, the free command can make more memory available for WRspice, but not for other programs
which may also be running.

Exceeding virtual memory limits is not in general a fatal error, depending on when the error occurs.
Plots and iplots allocate all memory needed at the beginning of the operation, so an out of memory
condition will usually abort the operation and return the command prompt. It is possible, though, for
further errors to be generated by a memory failure which may cause a segmentation fault.

1.4 Program Control

WRspice is intended for use as an interactive tool, though various batch-mode features are supported.
Circuit input is provided in the form of files which are loaded into WRspice. These files can be generated
by the user with a text editor, or be generated by a graphical editor program such as Xic. Once
loaded into WRspice, a circuit is subject to the many types of analysis and post-processing operations
available through WRspice commands. These commands can be given interactively through the text-
mode interface provided by WRspice, or in many cases through graphical operations.

The most common way directives are provided to WRspice is through the text-mode command line
interface. The command line interface behaves very much like a UNIX shell, through which commands
are entered, variables set, and output is printed. The shell provides most of the mechanisms familiar
from UNIX shells, including aliasing, history substitution, and command completion.

The command shell is normally established on the input terminal or terminal emulation window from
which WRspice was executed. WRspice takes control of this terminal, that is, all input typed will be
directed to WRspice, however the operating system job control commands can be used to place WRspice

in the background.

The WRspice shell provides a command language, which enables scripts containing commands to be
executed. Writing scripts enables automation of repetitive or complicated tasks. Control commands can
be added to circuit files, and in fact a unified input processing system handles both type of input. Input
files are loaded into WRspice with the source command. The “source” is in fact optional. If the file
name does not conflict with the name of a WRspice command, simply typing the name of the file will
perform the source operation.

When graphics is available, WRspice provides a small “Tool Control” window which contains menus.
The menus contain buttons which in turn bring up graphical tools which control most of WRspice. All
of the operations of these tools have analogous command line commands, though many users find the
graphical interface preferable.

WRspice contains a complete HTML-based help system, available with the help command. The
help windows provide an extensively cross-linked reference on the various commands and features. In
addition, the help windows can be used to view arbitrary HTML content on the Internet or on the user’s
local machine.

1.5 Post-Processing and Run Control

WRspice in interactive mode provides a powerful plotting capability for simulation output. Plots can be
generated on the fly while simulating, or after simulation is complete. The command language provides
interactive data manipulation and generation capability on output prior to plotting. Any number of

12 CHAPTER 1. INTRODUCTION TO WRSPICE

plots can be shown on-screen at a given time, and traces can be copied between plot windows via mouse
operations for easy comparison.

A trace command allows the value of expressions involving circuit variables to be printed as sim-
ulation progresses. Simulation can be paused by typing the interrupt character (Ctrl-C), and can be
resumed later. Simulation can also be paused after a certain number of data points, or when a logical
expression involving circuit variables becomes true.

The Verilog capability can be used to provide automata for control and monitoring of a circuit during
simulation. Verilog modules are defined within the circuit description, and are evaluated as simulation
(transient analysis only) progresses. This is clearly useful for mixed analog/digital systems, but has
additional utility for implementing event or error counters, etc., for output statistical analysis.

WRspice provides a measurement capability for providing timing or other information from a cir-
cuit simulation. Any number of measurements can be included in a circuit description. This can be
particularly useful in optimization scripts.

All of this capability is tied together in the WRspice shell, which provides command processing in
interactive mode, but also provides a scripting capability. Scripts can be written to automate complicated
analyses and data manipulation. All circuit output data, device and circuit parameters, and shell
variables and vectors are available in a rich programming environment.

1.6 Introduction to Interactive Simulation

WRspice is an interactive circuit simulation program. One can find details about preparing WRspice

input files in Chapter 2.1 — this section assumes some familiarity with this syntax, which is basically
that of SPICE2. This section is intended to be a quick introduction to the use of WRspice, and its
capabilities. The remaining chapters provide details and in-depth explanations of the various modes,
functions, and features.

If Xic is being run, circuits can be entered graphically, making the command line interface described
here somewhat unnecessary (there are users, however, who prefer the command line interface). However,
in order to use the full spectrum of capabilities, the command line interface is required.

To start WRspice, one can type

wrspice input file

where input file is the name of the WRspice circuit description file to run. Alternately, one can simply
type

wrspice

in which case WRspice will start up without loading a circuit. A new circuit description file can be
loaded into WRspice by typing the command

source input file

If the name input file is different from any internal or external WRspice commands, the source command
can be eliminated, and the WRspice input file is loaded simply by typing the file name at the command
prompt. The file is parsed into an internal circuit representation, which is held in memory until explicitly

1.6. INTRODUCTION TO INTERACTIVE SIMULATION 13

deleted. The list of circuits is shown in the panel brought up by the Circuits button in the Tools menu
of the Tool Control window. One can switch the “current circuit” with the setcirc command.

When WRspice starts, it normally displays a Tool Control window containing command menus. The
menu buttons bring up panels which control and display information. Most of the typed commands have
analogues within the display panels. These panels can be arranged on the screen, and the configuration
saved, so that when WRspice is started subsequently, the user’s screen arrangement will be presented.

In addition, WRspice “takes over” the text window from which it was launched. The command
interface is very much like a shell, and in fact it can be configured to run operating system commands
in a manner very similar to the C-shell.

If there are any analysis lines in the input file and the user wishes to run the analyses as given there,
one simply enters

run

WRspice will run the requested analyses and will prompt the user again when finished and the output
data are available. If the user wishes to perform an analysis that is not specified by a line in the input
file, one can type the analysis line just as it would appear in the input file, without the dot. For example,
the command

ac lin 20 0.99 1.01

will initiate an ac analysis with 20 frequency values between 0.99 and 1.01.

After the analysis is complete and the WRspice prompt is displayed, the values of the nodes are
available. Similarly, one can load the results from previous WRspice sessions using the load command.
In either case, to plot the voltage on nodes 4 and 5, for example, one could then issue the command

plot v(4) v(5).

To display a list of the circuit variables available for plotting, type display at the command prompt.
The output data items displayed are vectors, with a length generally equal to the number of analysis or
output points in the simulation.

To plot vectors with the plot package, one types

plot varlist

where varlist is a list of outputs (such as v(3)) or expressions (such as v(3)*time). WRspice will plot
a graph of the outputs on the screen. When finished plotting, WRspice will issue a prompt. Under
windowing systems such as X, the plot will be drawn in a newly created window somewhere on the
screen. This window will remain open until explicitly dismissed by the user, however the execution
returns to WRspice immediately, so that any number of plots can be on-screen simultaneously.

One can also specify combinations of outputs and functions of them, as in

plot v(1) + 2 * v(2)

or

plot log(v(1)) sin(cos(v(2))).

14 CHAPTER 1. INTRODUCTION TO WRSPICE

Notice that the vector name v(1) is not a function, but rather denotes the voltage at the node named
1. One can use most algebraic functions, including trig functions, log - (base 10), ln - (base e), and
functions such as mag, the magnitude of the complex number, phase, the phase, real, the real part,
and imag, the imaginary part. These all operate on real or complex values. A complete list of functions
and operations available can be found in 3.16. Generally, any command which expects a vector as an
argument will accept an expression.

The notation

plot something vs something else

means to plot something with something else on the X-axis.

The plot style can be modified through buttons and features found on the plot window. These and
other features can have default behavior changed through setting of shell variables. Shell variables are
set with the set command from the command line, and any alphanumeric variable can be set to a value
or a string. There are a number of such variables that are predefined to affect plotting. These can also be
altered graphically from the panel brought up by the Plot Defs button in the Tools menu. The panel
brought up by the Variables button in the Tools menu shows a listing of the shell variables currently
set.

For example, one can modify the plot command to plot a subset of the data available. The command

set ylimit = "1 2"

plot v(1) v(2)

will plot the two vectors when the values are between 1 and 2, and

set xlimit = "1 2"

plot v(1) v(2)

will plot them when the scale (time or frequency) is between 1 and 2. The variables will remain set until
they are unset, using

unset xlimit ylimit

or the corresponding buttons in the Plot Defs panel are made inactive.

The command

set xcompress 5

plot v(1) v(2)

plots only every fifth point, and

unset xcompress

set xindices 20 30

plot v(1) v(2)

plots the values between the 20th time point and the 30th. Any of these variables may be used together,
and they are also available in the asciiplot command (which produces an ASCII representation for use
with text-only printers).

1.6. INTRODUCTION TO INTERACTIVE SIMULATION 15

Typing let without arguments is synonymous with the display command. The let command is
different from the set command, which sets non-vector shell variables, which may control various aspects
of WRspice operation. The let command is used to assign a new vector, for example

let aa = v(1)

will assign a new vector aa with all components equal to v(1). If no arguments are given, a listing of
output vectors from the most recent simulation is shown. This listing is also shown in the panel brought
up by the Vectors button in the Tools menu.

One can print the values of vectors with the print command:

print time

The command

print all

will print the values of all the data available. Incidentally, one can also use the keyword all with any
of the other commands that take vector names, like plot. There are also alias and history mechanisms
available (see 3.15 for details), and a shell command, which passes its arguments to the operating system
shell, or starts a subshell.

If the user wishes to save the output values in a data file known as a rawfile, one can then type

write filename v(4) v(5)

to put the values of v(4), and v(5) into filename. If the user wishes to save everything, one can type

write filename.

There are also many commands for tracing the analysis — one can print the values at a node for
each time point or cause WRspice to stop whenever a value gets to a certain point. Descriptions of the
commands stop, trace, and step can be found in 4.5. A listing of these commands that are currently
in force is available in the panel brought up with the Trace button in the Tools menu.

After the user is done with the values obtained from the simulation run, one can change the circuit
and re-run the analysis. If it is desired to edit the circuit itself, one can use the command edit — it
will bring up an internal text editor (or a favorite external editor) and allow changes to the circuit in
whatever way is necessary, and then when the editor is exited, WRspice can re-load the circuit and be
ready to run it again. Under UNIX with X windows, a default internal editor is provided. This editor
is also available as the “xeditor” command from the UNIX shell. Also, one can give another analysis
(ac, dc, tran, ...) command after the first one completes. If the analysis is not finished, i.e. the user
typed an interrupt (Ctrl-C), or the run stopped under the stop command, then one must type reset in
order to re-run an analysis from the beginning.

Each separate analysis that is performed will create one or more sets of values. Such a set of values
is called a plot — if several analyses have been performed, and the user wishes to switch from the results
of one to the results of another, the setplot command will inform the user as to which analysis results
are available and let the user choose one. The plots are displayed in the panel brought up by the Plots
button in the Tools menu.

16 CHAPTER 1. INTRODUCTION TO WRSPICE

To see what other commands are available, skip to Chapter 4, or type Ctrl-D in WRspice. For
information about a particular command, type help command , where command is one of those listed
by Ctrl-D. This introduction should be enough to get started.

Here is a sample WRspice run:

csh% wrspice

wrspice 10 -> source xtal.in

Circuit: crystal filter

wrspice 11 -> listing

(listing of the circuit is printed)

wrspice 12 -> run

wrspice 15 -> display

Here are the vectors currently active:

Title: crystal filter

Plotname: AC analysis curves.

Date: Thu Sep 26 12:16:34 PDT 1985

FREQ : frequency (complex, 20 long) [scale]

V(4) : voltage (complex, 20 long)

V(6) : voltage (complex, 20 long)

V(5) : voltage (complex, 20 long)

(and so on...)

wrspice 16 -> plot v(4)

(plot takes place)

wrspice 17 -> write outfile freq v(4)

wrspice 18 -> ac lin 30 1 2

wrspice 19 -> display

Here are the vectors currently active:

Title: crystal filter

Plotname: AC analysis curves.

Date: Thu Sep 26 12:16:34 PDT 1985

FREQ : frequency (complex, 30 long) [scale]

V(4) : voltage (complex, 30 long)

V(6) : voltage (complex, 30 long)

V(5) : voltage (complex, 30 long)

(and so on...)

wrspice 20 -> print v(4) > tempfile

(print to tempfile takes place)

wrspice 21 -> shell lpr tempfile

1.6. INTRODUCTION TO INTERACTIVE SIMULATION 17

(a printout is made of the results)

wrspice 22 -> load testh

Title: SPICE 3-C raw output test heading

Name: Transient analysis.

Date: 08/19/84 03:17:11

wrspice 23 -> display

Here are the variables currently active:

Title: SPICE 3-C raw output test heading

Plotname: Transient analysis.

Date: Sun Dec 1 11:18:25 PST 1985

TIME : time (real, 152 long) [scale]

v(1) : voltage (real, 152 long)

v(2) : voltage (real, 152 long)

v(3) : voltage (real, 152 long)

v(4) : voltage (real, 152 long)

v(5) : voltage (real, 152 long)

wrspice 24 -> print v(1)

(prints v(1) values)

wrspice 25 -> plot v(1)

(plot takes place)

wrspice 26 -> let xxx = log(v(1))

wrspice 27 -> plot xxx

(plot takes place)

wrspice 28 -> plot v(1) v(2) v(3) + 1 vs TIME * 2

(plot takes place)

wrspice 30 -> asciiplot v(1) v(2) TIME + 2 > File

wrspice 31 -> shell lpr File

(Pick up ASCII plot ...)

wrspice 33 -> quit

Warning: the following plot hasn’t been saved:

crystal filter, AC analysis curves.

Are you sure you want to quit? y

csh%

Note that WRspice will issue a warning if there is work in progress that has not been saved.

18 CHAPTER 1. INTRODUCTION TO WRSPICE

This page intentionally left blank.

Chapter 2

WRspice Input Format

2.1 Input Format

In this document, text which is provided in typewriter font represents verbatim input to or output from
the program. Text enclosed in square brackets ([text]) is optional in the given example, as in optional
command arguments, whereas other text should be provided as indicated. Text which is italicized should
be replaced with the necessary input, as described in the accompanying text.

Input to WRspice consists of ASCII text, using either Unix or Microsoft Windows line termination
methods. Input is contained in one or more files. If more than one file name is provided to the source
command, the file contents will be concatenated in the order given, and/or split into multiple circuits if
.newjob lines are found.

There is provision in the syntax for file inclusions (referencing the content of another file) to arbitrary
depth. Once the input files are read, the lines are logically assembled into a “deck” for each circuit, and
each line is sometimes referred to as a “card”, teminology reflecting the punched-card heritage of the
program.

The first line of a deck is taken as a title line for any circuit described in the deck. If the deck
does not define a circuit (it may consist of commands text only), the title line is not used, but with a
few exceptions must be present in input. The title line can contain 7-bit ASCII characters only. If a
character is found in the title line with the most-significant bit set, the read is aborted, as this is taken
as binary input, and attempting to read a binary file would generate a cascade or errors or crash the
program. Binary characters can exist elsewhere in the file, if necessary for whatever reason.

One exception to the rule that the first line be a title line is if the first line of text in a file starts
with the characters “#!”, that line will be discarded when the file is read. This enables WRspice input
files to be self-executing using the mechanisms of the UNIX shell. For example, if the following line is
prepended to an input file

#! wrspice

and the file is made executable, then typing the name of the file will initiate WRspice on the circuit
contained in the file.

The remaining lines are either circuit element descriptions, or “dotcards”, or blocks of text surrounded
by dotcards. The circuit element lines define the devices found in the circuit, providing connection points

19

20 CHAPTER 2. WRSPICE INPUT FORMAT

which define the circuit topology, and device parameter values. The dotcards are lines whose initial token
is a keyword starting with ‘.’. These provide various control directives and data for use in simulating
the circuit, including device models. Some dotcards, such as .verilog and .control provide blocks of
lines in some other format, which is different form the SPICE format and is described separately.

The order of the circuit definition and control lines is arbitrary, except that continuation lines must
immediately follow the line being continued, and certain constructs contain blocks of lines, which may
be command scripts which must be ordered.

Certain special input file formats are recognized, such as operating range analysis control files, and
files generated by the Xic schematic capture front end. Exceptions to the rule of arbitrary line placement
will be described in the sections describing these files.

Fields on an element line and most dotcards are delimited by white space, a comma, an equal sign
(‘=’), or left or right parentheses; extra white space is ignored.

A line may be continued to the following line(s) in two ways. If the last character on a line is a
backslash character (\), the “newline” is effectively hidden, and the text on the following line will be
appended to the current line, however leading white space is stripped from the continuing line. If there
is more than one backslash at the end of the line, all will be stripped before the line is joined to the
following line. The traditional SPICE line continuation is also available, whereby a line may be continued
by entering a + (plus) as the first non-white space character of the following line, WRspice will continue
reading beginning with the character that follows.

Devices and device models are given names in input for reference. These name fields must begin with
a letter and cannot contain any delimiters. Circuit connection points (“nodes’) are also given arbitrary
names, however these may start with or just be an integer. The ground node must be named “0” (zero),
however. Note that “00” (for example) and ”0” are distinct in WRspice, but not in SPICE2. Non-ground
node names may have trailing or embedded punctuation (but this is generally not recommended).

2.1.1 Case Sensitivity

In WRspice, case sensitivity of various object names and strings is under program control. Historically
the following have all been case sensitive in WRspice:

Function names.
User-defined function names.
Vector names.
.PARAM names.
Codeblock names.
Node and device names.

By default, starting in release 3.2.4, function names and user-defined function names were made
case-insensitive. Starting in release 3.2.15, parameter names were made case-insensitive. Finally, in
3.2.16, the remaining categories were made case-insensitive. Thus, in present releases, all identifiers are
case-insensitive. This seems to be the common practise in commercial simulators.

Case sensitivity must be established at program startup and can not be changed during operation.
There are two ways to accomplish this:

1. The “-c” command line option.

2.1. INPUT FORMAT 21

2. The setcase command called in a startup file.

2.1.2 Numeric Values

A number field may be an integer field (12, -44), a floating point field (3.14159), either an integer or
floating point number followed by an integer exponent (1E-14, 2.65e3), or either an integer or a floating
point number followed by one of the following scale factors. All of this is case-insensitive.

t 1e12
g 1e9
meg 1e6
k 1e3
mil 25.4e-6
m 1e-3
u 1e-6
n 1e-9
p 1e-12
f 1e-15

Immediately following the number and multiplier is an optional units string. The units string is
composed of the separation character ‘#’, unit specification abbreviations as listed with the settype
command (see 4.6.14), and digit exponents. Giving the settype command without arguments will list
the unit abbreviations known to WRspice.

The units string must start with a letter, or the separation character followed by a letter, or two
separation characters followed by a letter. The string consists of a sequence of abbreviations, each
optionally followed by a digit exponent. If the separation character appears within the string, the
abbreviations that follow provide denominator units. The separation character in this context is logically
equivalent to ‘/’.

The initial separation character is almost always optional. It is needed when there would be possible
misinterpretation, for example 1.0F is dimensionless 1e-15, whereas 1.0#F is 1.0 farads. If the initial
separation character is immedaiately followed by another separation character, then all dimensions that
follow are denominator units.

Some Examples:

1.0#F#M2 1 farad per square meter
1.0##S 1 Hz
1.2uA#S 1.2 microamps per second
1.2uVS 1.2 microvolt-seconds

All multipliers and unit abbreviations are case-insensitive, but by convention we use lower case for
the multiplier and upper case for the first letter of the unit abbreviation.

If the unit specifier contains an unrecognized character or abbreviation, it is ignored, and the number
is dimensionless.

Internal representations of numbers carry along the unit specifier, which will appear in output, and
will propagate through calculations. Thus, for example, a number specified in volts, divided by a number
specified in ohms, would yield a number whose specification is amps.

It is possible to use a different character as the separator. If the variable units catchar is set to a
string consisting of a single punctuation character, then this character becomes the separation character.

22 CHAPTER 2. WRSPICE INPUT FORMAT

2.2 Variable Expansion in Input

WRspice provides a unique and very useful feature: as the circuit description is being read, any shell
variable references found in the element lines or most dotcards are expanded. The reader should be aware
that just about any text within the circuit description can be specified through the shell substitution
mechanism.

Shell variables are tokens which begin with “$”, that have been previously defined within WRspice.
They most often appear for numeric values in the deck, and the actual value replaces the “$” token.
These variables are evaluated as the circuit is read in, or with the reset command once the circuit is
loaded. The variables must be known to the shell before the circuit is parsed, so if they are defined in the
input file, the definition must occur in .exec blocks or .options lines, which are evaluated before the
circuit is parsed, and not .control blocks, which are evaluated after the circuit is parsed. If the ‘$’ is
preceded with a backslash (‘\’), the shell substitution is suppressed, but the construct forms a comment
delimiter so that the remainder of the line is ignored.

Another type of expansion, single-quote expansion, is also performed as input is read. This is
most often used in .param lines, and is another means by which the circuit can be configured before
simulating through prior WRspice operations. Any text enclosed in single quotes (’) will be evaluated as
an expression as the file is read (before shell substitution) and the string will be replaced by the result.
Since evaluation is performed before shell substitution, the expression can not contain shell variables or
other ‘$’ references, but it can contain vectors (which must be defined before the circuit is read).

2.3 Title, Comments, Job Separation, and Inclusions

2.3.1 Title Line

The first line of the circuit description is a title line. Any text (including a blank line) can appear in the
title line. The line is printed as part of generated output, but is otherwise unused by WRspice.

In the title line, the character sequences “\n” and “\t” are replaced with newline and tab characters,
respectively. Thus, it is possible to have a title string that prints multiple lines. The title line always
counts as a single line for internal line numbering, however.

2.3.2 Comments

General Form:
*any comment
any spice text \$ this text is ignored

Examples:
* rf=1k gain should be 100

*beginning of amplifier description

r1 1 0 100 \$ this is a comment

In the circuit description, an asterisk (‘*’) as the first non-white space character indicates that this
line is a comment line. Comments may be placed anywhere in the circuit description. Also, there is
provision for adding comments to the end of a line.

2.3. TITLE, COMMENTS, JOB SEPARATION, AND INCLUSIONS 23

Comment lines which begin with ‘*@’ and ‘*#’ in the circuit description are special: they are taken
as executable statements as if included in .exec or .control blocks, respectively (see 2.10.1).

Comments at the end of a line may be added as follows:

• If the sequence “\$” appears in a line of SPICE input and is preceded by white space or is at the
beginning of the line, these and the characters that follow on the line are taken as a comment.

• If an isolated ‘$’ character is found, i.e., with white space or start of line preceding and white space
following, The ‘$’ and text that follows on the line will be taken as a comment.

• If an isolated ‘;’ character is found, i.e., with white space or start of line preceding and white space
following, The ‘;’ and text that follows on the line will be taken as a comment.

In addition, for compatibility with other simulators, the dollarcmt variable can be set. When set, any
‘$’ or ‘;’ character preceded by start of line, white space, or a comma, will be taken as the start of a
comment.

In .exec and .control blocks, comments are indicated for lines with the first non-whitespace char-
acter being ‘#’, for compatibility with the shell. In Verilog blocks, The C++ commenting style (“//”
for single line comments and “/* ... */” for multi-line comments) is recognized.

2.3.3 .title Line

General Form:
.title any text

Example:
.title This is an alternate title

This simply replaces the title line text in output.

2.3.4 .end Line

General Form:
.end

This line is optional, but if it appears it should be the last line in the circuit description part of the
input file. The .end line is ignored in WRspice.

2.3.5 .newjob Line

General Form:
.newjob

The .newjob line is recognized in files directly read by WRspice, and not in files read through
.include/.lib directives (see below). When encountered during a source command, file parsing for
the present circuit terminates, and lines that follow are taken as belonging to a new circuit deck. The

24 CHAPTER 2. WRSPICE INPUT FORMAT

script execution and other operations that usually occur at the end of a source operation are done
before parsing (for a new circuit) resumes.

Thus, one can place multiple circuit descriptions in a single file, separated by .newjob lines. Sourcing
the file is equivalent to sourcing each circuit independently and sequentially.

With no .newjob lines, when multiple files are listed on the command line in batch mode, or given to
the source command, they are simply concatenated. With .newjob lines, it is possible to give multiple
circuits within a single or several files. WRspice will source the circuits as if they were given individually,
in sequence. The circuits may or may not coincide with the physical files – lines in the files between
.newjob lines are concatenated. After a source of multiple circuits, the current circuit will be the last
circuit read.

Batch mode is similar. A single batch job can run multiple circuits. Logical circuts are read, run,
and output generated, in sequence. The individual circuits can be concatenetated into a single file,
separated with .newjob lines, or a .newjob line can be added to the top of the individual circuit files.
In the later case, “wrspice -b file1 file2 ...” would run each circuit in sequence. If the .newjob lines
weren’t present, WRspice would attempt to run a concatenation of the files. In batch mode, since it
is possible to run multiple circuits, the .cache/.endcache feature can be used to advantage, without
using a command script.

The line that follows a .newjob line is interpreted in exactly the same way as the first line of an
input file, i.e., it is interpreted as a circuit title line except in a few cases. If the first line of an input
file is a .newjob line, it will be ignored, except that when reading multiple files, it indicates that a new
circuit should start, rather than concatenation of the file to previous input.

Although circuits run in this manner are independent, note that variables set by scripts associated
with a circuit, for example, would remain set for the later circuits. Thus, there are potential side effects
which must be considered.

The .cache/.endcache blocks work as they would in separate files. Only one cache block can appear
in a circuit, but of course a file containing multiple circuits can contain multiple cache blocks.

The .newjob lines separate the input into separate groups of lines, so one must take care to ensure
that all related .control, .verilog, etc., blocks and lines will appear in the correct group. There are
no “common” lines.

2.3.6 .include or .inc Line

General Form:
.include [h] filename
.inc [h] filename

Example:
.include models.def

.inc /projects/data.inc

.inc h /models/hspice models.inc

The keywords “.include” and “.inc” are equivalent. The .include line specifies that the named
file is to be read and added to the input at the location of the .include line. Included files may be
nested arbitrarily.

If the h option (case insensitive) is given, the dollarcmt variable is effectively set while the file, and

2.3. TITLE, COMMENTS, JOB SEPARATION, AND INCLUSIONS 25

any recursive sub-files, are being read. Thus, the HSPICE ‘$’ comment syntax will be recognized in the
included files. The dollarcmt variable is reset to its prior value after the read.

This avoids having to explicitly set the dollarcmt variable when reading files intended for HSPICE.
It allows the normal WRspice shell substitution to work with the file containing the include line, which
would not be the case if the dollarcmt variable was set explicitly.

While the included file is being read, the current directory is pushed to the directory containing the
file. Thus, .include (and .lib) lines in the file will have paths resolveed relative to that directory, and
not the original current directory.

In WRspice, the keyword .spinclude is accepted as a synonym for .include. This is for compatibility
with Xic, which will replace .include lines with the file contents, but will pass .spinclude lines to
SPICE, after converting “.spinclude” to “.include”.

These lines are shell expanded when encountered, before the indicated file is accessed. This allows
the paths to include shell variables, which can be set interactively. Normal shell expansion, which applies
to all other lines, occurs after all includes are read, parameter expansion, etc., much later in the sourcing
process. Note that shell variables can’t be used in files included with the ‘h’ option, or when the dollarcmt
variable is set, as the ‘$’ will be taken as the start of a comment.

2.3.7 .lib Line

General Form:
.lib [h] path to file name

Example:
.lib /usr/local/parts/mylib mos25

.lib h /usr/cad/hspice models mymod

This will look in path to file for lines enclosed as follows.

.lib name

... lines of SPICE text

.endl

The lines inside the block will be read into the input deck being parsed, similar to the .include line.

If the h option (case insensitive) is given, the dollarcmt variable is effectively set while the file, and
any recursive sub-files, are being read. Thus, the HSPICE ‘$’ comment syntax will be recognized in the
text. The dollarcmt variable is reset to its prior value after the read.

This avoids having to explicitly set the dollarcmt variable when reading files intended for HSPICE. It
allows the normal WRspice shell substitution to work with the file containing the .lib line, which would
not be the case if the dollarcmt variable was set explicitly.

While the file is being read, the current directory is pushed to the directory containing the file.
Thus, .include and .lib lines in the file will have paths resolveed relative to that directory, and not
the original current directory.

These lines are shell expanded when encountered, before the indicated file is accessed. This allows the
paths or block names to include shell variables, which can be set interactively. Normal shell expansion,
which applies to all other lines, occurs after all includes are read, parameter expansion, etc., much later

26 CHAPTER 2. WRSPICE INPUT FORMAT

in the sourcing process. Note that shell variables can’t be used in files included with the ‘h’ option, or
when the dollarcmt variable is set, as the ‘$’ will be taken as the start of a comment.

The library file can contain any number of .lib blocks. The .lib block can itself contain .lib

references. The text can be any valid WRspice input. The name is an arbitrary text token, which should
be unique among the .lib blocks in a library file.

Example:
title line

.lib /usr/stevew/spice/stuff/mylibrary mosblock

... more lines

In /usr/stevew/spice/stuff/mylibrary:

.lib mosblock

m0 4 9 12 PSUB p1pvt l=0.25u w=2.4u

.endl

is equivalent to:

title line

m0 4 9 12 PSUB p1pvt l=0.25u w=2.4u

... more lines

In WRspice, the keyword .splib is accepted as a synonym for .lib. This is for compatibility with
Xic, which will replace .lib lines with the block of text from the library, but will pass .splib lines to
SPICE, after converting “.splib” to “.lib”.

2.3.8 .mosmap Line

General Form:
.mosmap [ext level] [wrspice level]

Example:
.mosmap 127 14

.mosmap

This construct maps the level number found in MOS .model lines to another number in WRspice.
Different SPICE simulators may provide similar internal MOS model support, although with different
level numbers. Although an attempt has been made in WRspice to be compatible with HSPICE level
numbers, there may be differences, and there is less commonality with other SPICE programs. One can
in principle simply copy the model files and edit the level numbers to those expected in WRspice, but
this may be inconvenient.

Suppose that you have a set of model files provided by a foundry service, designed for another
simulator. These files provide parameters for the Berkeley BSIM-4.4 model, with level 99 (as an example).
In WRspice, the BSIM-4.4 model is assigned to level 14. Rather than copying and editing the files, one
can use to following construct in the WRspice input:

2.4. INITIALIZATION 27

.mosmap 99 14

.include path to model file

The level 99 as found in the model file will be interpreted as level 14 in WRspice.

This line must appear logically ahead of, i.e., read before, the corresponding .model lines. Any
number of .mosmap lines can be used in the input. The mapping applies while the file is being read and
is not persistent.

In the most common usage, .mosmap is followed by two integers, the first being the model level
to map, and the second being a valid MOS level number in WRspice. If only one number appears,
any mapping associated with that number is removed for the remainder of the file read. If no number
appears, then all mappings are removed for the remainder of the read. These latter cases are probably
infrequently needed.

Note that the devmod command in WRspice can be used to change device model levels, which may
be more convenient than using .mosmap, and applies to all device types.

2.4 Initialization

2.4.1 .global Line

General Form:
.global node1 node2 ...

The arguments are node names. These declared node names remain unaltered when subcircuits are
expanded, thus the indicated nodes become accessible throughout the circuit.

For example, the substrate node of all n-channel MOSFETS in the main circuit and subcircuits can
be tied to a node listed in the .global line. Then, substrate bias can be applied to all substrate nodes
with a single source, conveniently located in the main circuit.

2.4.2 .ic Line

General Form:
.ic v(nodname)=val v(nodname)=val ...

Example:
.ic v(11)=5 v(4)=-5 v(2)=2.2

This line is for setting transient initial conditions. It has two different interpretations, depending on
whether the uic parameter is specified on the .tran line. Also, one should not confuse this line with the
.nodeset line. The .nodeset line is only to help dc convergence, and does not affect final bias solution
(except for multi-stable circuits). The two interpretations of this line are as follows:

1. When the uic parameter is specified on the .tran line, then the node voltages specified on the .ic
line are used to compute the capacitor, diode, BJT, JFET, and MOSFET initial conditions. This
is equivalent to specifying the ic=... parameter on each device line, but is much more convenient.
The ic=... parameter can still be specified and will take precedence over the .ic values. Since no

28 CHAPTER 2. WRSPICE INPUT FORMAT

dc bias (initial transient) solution is computed before the transient analysis, one should take care
to specify all dc source voltages on the .ic line if they are to be used to compute device initial
conditions.

2. When the uic parameter is not specified on the .tran line, the dc bias (initial transient) solution
will be computed before the transient analysis. In this case, the node voltages specified on the .ic

line will be forced to the desired initial values during the bias solution. During transient analysis,
the constraint on these node voltages is removed.

2.4.3 .nodeset Line

General Form:
.nodeset v(nodname)=val v(nodname)=val ...

Example:
.nodeset v(12)=4.5 v(4)=2.23

This line helps the program find the dc or initial transient solution by making a preliminary pass
with the specified nodes held to the given voltages. The restriction is then released and the iteration
continues to the true solution. The .nodeset line may be necessary for convergence of bistable or astable
circuits. In general, this line should not be necessary.

2.4.4 .options Line

General Form:
.options opt1 opt2 ... (or opt=optval ...)

Example:
.options reltol=.005 trtol=8

Options which control the operation of the simulator can be entered in the WRspice input file following
the .options keyword. There are a number of variables which control simulation, many familiar from
SPICE2. Any variable can be set on the .options line, and is similar to setting the variable from the
shell with the set command, however the variables set from the .options line are active only when the
circuit is the current circuit, and they can not be unset with the unset command.

Multiple .options lines can appear in input. The lines are shell-expanded and evaluated in top-
to-bottom order, and left-to-right for each line. The .options lines are expanded and evaluated after
execution of the .exec lines. The result of processing each option is immediately available, so that lines
like

.options aaa=1 bbb=$aaa

.options random tmpval = $&(gauss(.2,1))

will work. In the second line, the variable random will be set when the gauss function is evaluated, so
that it will return a random value, and not just the mean.

The variables set in the .options lines are set before variable expansion is performed on the rest of
the circuit text, so that global shell variables may be set in the .options lines.

2.4. INITIALIZATION 29

The options which control simulation can also be entered from the keyboard by using the WRspice set
command, or equivalently from the graphical tools available from the Tools menu of the Tool Control
window (described in 3.5). Before a simulation starts, these options will be merged with the options
from the .options lines, unless the noshellopts variable is set from the shell . The result of the merge is
that options that are booleans will be set if set in either case, and those that take values will assume the
value set through the shell if conflicting definitions are given. The merge will be suppressed if the shell
variable noshellopts is set, in which case the only options used will be those from the .options lines,
and any shell redefinitions will be ignored.

In general, variables set in the .options lines are available for expansion in $variable references,
but do not otherwise affect the workings of the shell (see 3.15). Variables set from a .options line are
indicated with a “+” in the listing provided from the set command given with no arguments, or in the
Variables tool from the Tools menu in the Tool Control window. The cktvars variable can be set from
the shell, to allow variables set in .options lines to be treated fully as shell variables.

Although any variable can be set from a .options line, the variables listed below are most likely
to appear in that context due to SPICE2/3 history. There are other simulation-related variables which
may also be likely given as options, see 4.9.5.

Option Effect

abstol=x Resets the absolute current error tolerance of the program. The default value
is 1 picoamp.

acct Print accounting information in batch output.
bypass Set to 0 to disable element computation bypassing.
chgtol=x Resets the minimum charge used when computing the time step in transient

analysis. The default value is 1.0e-14.
defad=x Resets the value for MOS drain diffusion area; the default is 0.0.
defas=x Resets the value for MOS source diffusion area; the default is 0.0.
defl=x Resets the value for MOS channel length; the default is 100.0 micrometer.
defw=x Resets the value for MOS channel width; the default is 100.0 micrometer.
gmin=x Resets the value of gmin, the minimum conductance allowed by the program.

The default value is 1.0e-12.
hspice Suppress warnings from unsupported HSPICE input.
itl1=x Resets the dc iteration limit. The default is 400.
itl2=x Resets the dc transfer curve iteration limit. The default is 100.
itl4=x Resets the transient timepoint iteration limit. The default is 10.
list Print a listing of the input file in batch output.
node Print a tabulation of the operating point node voltages in batch output.
notrapcheck Skip trapezoidal integration convergence testing in transient analysis.
opts Print a summary of the specified options in batch output.
parhier Set the parameter substitution precedence, “local” or “global” (default).
pivrel=x Resets the relative ratio between the largest column entry and an acceptable

pivot value. The default value is 1.0e-3. In the numerical pivoting algorithm
the allowed minimum pivot value is determined by
epsrel = max(pivrel ∗ maxval, pivtol) where maxval is the maximum element
in the column where a pivot is sought (partial pivoting).

pivtol=x Resets the absolute minimum value for a matrix entry to be accepted as a
pivot. The default value is 1.0e-13.

reltol=x Resets the relative error tolerance of the program. The default value is 0.001
(0.1 percent).

spice3 Use the SPICE3 integration level control logic in transient analysis.
temp=x Resets the operating temperature. The default value is 25C (300K).

30 CHAPTER 2. WRSPICE INPUT FORMAT

tnom=x Resets the nominal temperature. The default value is 25C (300K).
trapratio=x Resets the threshold for trapezoidal integration convergence testing. The

default value is 10.0.
trtol=x Resets the transient time step prediction factor. The default value is 7.0. This

parameter is an estimate of the factor by which WRspice overestimates the
actual truncation error.

trytocompact Enable compaction in LTRA (lossy transmission line) model.
vntol=x Resets the absolute voltage error tolerance of the program. The default value

is 1 microvolt.
xmu=x Resets the SPICE2 trapezoidal/Euler mixing parameter. If 0.0, integration is

pure-Euler. The default value is 0.5 (pure trapezoidal).

2.4.5 .table Line

General Form:
.table name [ac] x0 v0 x1 v1 ... xN vN

Examples:
.table tab1 0 .1 1n .2 2n .4 3n .2 4n .1 5n 0

.table xgain 0 0 1 1 1 1.5 4 2

.table acvals ac 0 1.0 0, 1e3 .98 .03, ...

.table zz (0 table xgain 4 2)

.table tab1 0 1 .2 .5 .4 table txx .8 .5e-2

The .table line defines a tabulation of data points which can be referenced from other lines in the
SPICE file. The data are listed in sequence with respect to the ordinate xN . The elements are separated
by white space or commas, and may optionally be surrounded by parentheses. Generally, the table
construct consists of many lines, using the ‘+’ or backslash line continuation mechanism. When a table
is referenced, the data value returned is interpolated from the values in the table.

The xi in the .table line are values of the independent variable (i.e., the variable given as an
argument to the referencing function). The vi entries can be numbers, or a reference to another table in
the form

table subtab name

in which case that table will be referenced to resolve the data point.

If the ac keyword is given, the data numbers vi are expected to be complex values, which are expressed
as two values; the real value followed by the imaginary value. Any sub-tables referenced must also have
the ac keyword given. The ac tables provide data for frequency-domain analysis. Without ac, all values
are real, and the table is intended for use in dc or transient analysis.

A non-ac table is referenced through a tran-function (see 2.15.3). Tables with the ac keyword given
are referenced through the ac keyword in dependent and independent sources (see 2.15 and 2.15.4).

Let x be the input variable associated with the device referencing a table. The table is evaluated as
follows:

2.5. PARAMETERS AND EXPRESSIONS 31

x < x0 val = v0(x0)
x0 < x < x1 val = v0(x) if v0 is a table

val = interpolation of v0(x0) and v1(x1) if v0 is a number

...

x > xN val = vN (x) if vN is a table
val = vN if vN a number
val = vN−1(xN) if vN is omitted

See the section A.3 for sample input files which illustrate the use of the .table line.

2.4.6 .temp Line

General Form:
.temp temperature [temperatures ...]

Examples:
.temp 25

.temp 0 25 50 75 100

In some versions of SPICE, this card provides a list of temperatures, and analysis will be performed
at each temperature in the list.

In WRspice, the first temperature given (Celsius) will set the default circuit temperature used for all
analysis. This will be overridden by a temperature set on a .options line or with the temp variable, set
with the set command or otherwise. Additional temperatures listed are ignored.

2.5 Parameters and Expressions

2.5.1 Single-Quoted Expressions

Text enclosed in single quotes (’) will be evaluated as an expression as the file is read and the string will
be replaced by the result. This will occur throughout the SPICE text, with the exception of .measure
lines, where single-quotes are traditionally (i.e., in HSPICE) used as expression delimiters.

Single-quoted expressions outside of .subckt blocks are expanded before variable substitution and
subcircuit expansion. In this case, since evaluation is performed before shell substitution, the expression
can not contain shell variables or other ‘$’ references. Single-quoted expressions that appear within
.subckt blocks are evaluated after variable substitution during subcircuit expansion. Thus, these ex-
pressions can contain shell ’$’ constructs.

In general, single-quoted expressions can not contain vectors other than those defined in the constants
plot and “temper”. If a vector reference such as “v(1)” is found in a single-quoted expression being
evaluated, the expression will be parameter expanded as much as possible, but left in the form of an
expression. Thus, the construct can appear only where an expression is expected by the circuit parser,
such as for the definitions of resistance and capacitance for resistor and capacitor devices.

If the single-quoted expression appears to the left of an ’=’ sign, as an assignment, no substitution
is done. In this case, the quotes are ignored.

32 CHAPTER 2. WRSPICE INPUT FORMAT

2.5.2 .param Line

General Form:
.param name = value [name = value] ...

.param func(arg1, ...) = expression

Example:
.param p1 = 1.23 p2 = ’2.5∗p1’
.param myabs(a) = ’a < 0 ? -a : a’

This assigns the text value to the text token name. The name must start with a letter or underscore.
If the text string name, delimited by space or one of ,)([]=’" but not with ‘=’ to the right is found in
the text, it is replaced by its value. The ‘%’ concatenation character is recognized. The concatenation
character is used to separate the token from the other text: for example RES%K allows RES to be identified
as a token, and if RES is ‘1’ the substitution would yield ‘1K’. The name token must be surrounded by
non-alphanumeric characters.

The concatenation character can be set to a different character with the var catchar variable. If this
variable is set to a string consisting of a single punctuation character, then that character becomes the
concatenation character.

Substitutions occur on a second pass, so the order of definition and reference is not important (except
when used in .if or .elif, described below). Substitutions are not performed in Verilog blocks, but
are performed everywhere else. The .param lines always have global scope, meaning that they apply to
the entire circuit, whether or not they are located within .subckt blocks.

Values can contain parameter references, i.e., nesting is accepted.

The default scoping of parameter substitution when there is more than one definition for a name
is global. This means that the highest level definition has precedence in a subcircuit hierarchy. The
scoping rules are identical those of HSPICE.

Warning: in releases prior to 3.2.15, the scoping rules were different, and different from HSPICE
rules but closer to “local” mode.

The scoping rule set can be changed with the parhier option. This can be set in a .options line to
one of two literal keywords: “global” or “local”. The global setting is the default. When “local” is
specified, the precedence order is bottom-up, with the lowest level definition having precedence.

A parameter defined in a subcircuit instantiation line will override a definition given in a .param line
in the subcircuit body, which in turn will override a parameter definition provided in the .subckt line.
This sub-precedence is not affected by the parhier setting.

It is also possible to define “user defined” functions using the second form above. This is similar to to
the define shell function, but functions defined in this manner exist only transiently, and will override
a function of the same name and argument count defined with the define command.

The scoping for function definitions follows that of normal parameters, taking into account the
parhier setting.

In general, these function definitions disappear from memory after parameter expansion has been
performed, however is some cases “promoted macros” will be created and saved with the current circuit.
This occurs when a single-quoted expression references a circuit variable, and also calls a function
defined with the parameters. The function cannot be evaluated and is retained for later evaluation
(during analysis). For this to succeed, the referenced macros must be available as well, so these are

2.5. PARAMETERS AND EXPRESSIONS 33

“promoted” to a persistent database within the circuit data structure. It is not possible to undefine
these functions, excapt by destroying or changing the current circuit. In the listing of functions provided
by the define command without arguments, functions from the current circuit are listed with an asterisk
in the first column.

References to parameters outside of any .subckt definition are evaluated after variable expansion.
References within .subckt definitions are evaluated after variable substitution, during subcircuit expan-
sion.

The value must be a single token, or be enclosed by single or double quotes. If double quotes are used,
they are stripped when the substitution is applied. Single quotes are retained in the substitution, as
single quotes have significance in delimiting an expression. Parameter substitution is performed whether
or not the substitution variable in part of a single or double quoted string.

Parameters can be accessed as vectors through the syntax “@paramname”. The value of the vector is
the numerical value of the parameter-expanded value string. These vectors are read-only, i.e., parameters
can not be set through vectors.

2.5.2.1 Pre-Defined Parameters

The following parameter definitions are always automatically defined, as if specified on a .param line.
However, they are read-only, and attempts to redefine them will silently fail.

WRSPICE PROGRAM

The value of this parameter is set to 1. This enables users to include WRspice-specific input in
SPICE files, which will be ignored by other simulators (and vice-versa). The following lines will
accomplish this:

.param WRSPICE PROGRAM=0

.if WRSPICE PROGRAM=1

(input lines specific for WRspice)
.else

(input lines specific to another simulator)
.endif

The first (.param) line would be silently ignored in WRspice, so that the “(input lines specific for
WRspice)” will be read. In another simulator, the parameter definition will set WRSPICE PROGRAM

to zero, so that the “(input lines specific to another simulator)” would be read instead.

WRSPICE RELEASE

The parameter WRSPICE RELEASE is predefined with the release code number. The release code
number is a five digit integer xyzz0, corresponding to release x.y.z. The x and y fields are one digit,
z is two digits, 0 padded. The trailing 0 is a historical anachronism. For example, release 3.1.15
has release code number 32150. This parameter is read-only, and attempts to change its value in
a .param line or otherwise are silently ignored.

2.5.3 .if, .elif, .else, and .endif Lines

General Form:
.if expression [= expression]

34 CHAPTER 2. WRSPICE INPUT FORMAT

General Form:
.elif expression [= expression]

General Form:
.else

General Form:
.endif

Example:
SPICE deck title line

...

.param use new mod = 8

...

.if use new mod = 8

.model m1 nmos(level=8 ...

.elif use new mod = 9

.model m1 nmos(level=9 ...

.elif use new mod

.model m1 nmos(level=10 ...

.else

.model m1 nmos(level = 3 ...

.endif

For compatibility with other simulators, the keyword “.elseif” is accepted as an alias for “.elif”.

The WRspice input file syntax supports conditional blocks, through use of these directives. The
expression can involve constants, parameter names from a .param line included in the file, or vectors
and shell variables defined before the file is read. It does not understand variables implicitly set by
inclusion in the .options line, or parameters set in .subckt lines or references. The scope for these
constructs is always global, meaning that they apply to lines of text in the file without regard to .subckt

block boundaries.

If the single expression is nonzero, or the two expressions yield the same result, the lines following
.if up to the matching .elif, .else or .endif are read, and if an .else block follows, those lines
to the matching .endif are discarded. If the single expression if zero or the two expressions do not
match, the lines following .if to the matching .elif, .else or .endif are discarded, and if a .else

line follows, the lines following .else to .endif are retained. These blocks can be nested. The action
is similar to the C preprocessor.

This filtering is performed early in the parsing of the file, so that the .if, etc. lines can enclose
script lines, verilog blocks, etc., and not simply circuit lines. The lines not in scope are never saved in
memory.

The predefined read-only WRSPICE RELEASE parameter can be used in conjunction with the .if

conditionals to select WRspice-specific lines in input files.

For example:

.param WRSPICE RELEASE=0 $ This is ignored by WRspice

.if WRSPICE RELEASE

(WRspice-specific lines)

2.6. SUBCIRCUITS 35

.else

(lines for HSPICE or whatever)

.endif

2.6 Subcircuits

A subcircuit that consists of WRspice elements can be defined and referenced in a fashion similar to
device models. The subcircuit is defined in the input file by a grouping of element lines; the program
then automatically inserts the group of elements wherever the subcircuit is referenced. There is no limit
on the size or complexity of subcircuits, and subcircuits may contain other subcircuits. An example of
subcircuit usage is given in A.3.

2.6.1 .subckt Line

General Form:
.subckt subnam n1 [n2 ...] [param1=val1 param2=val2 ...]

Examples:
.subckt opamp 1 2 3 4

.subckt stage1 3 10 2 resis=2k cap=1nf

The keyword “.macro” is equivalent to “.subckt”. The “.subckt” keyword is actually a default,
and this keyword can be reset through setting the substart variable. The .macro variable applies in any
case.

A subcircuit definition begins with a .subckt line. The subnam is the subcircuit name, and n1 , n2 ,
... are the external nodes, which cannot be zero. The group of element lines which immediately follow
the .subckt line define the subcircuit. The last line in a subcircuit definition is the .ends line (see
below). Control lines should not appear within a subcircuit definition, however subcircuit definitions
may contain anything else, including other subcircuit definitions, device models, and subcircuit calls (see
below). Note that any device models or subcircuit definitions included as part of a subcircuit definition
are strictly local (i.e., such models and definitions are not known outside the subcircuit definition).
Also, any element nodes not included on the .subckt line or in .global lines are strictly local, with the
exception of 0 (ground) which is always global.

The subcircuit declaration line can contain an optional list of param=value pairs. The params are
tokens which must start with a letter or underscore, which can appear in the subcircuit lines. These
are not shell variables, so there is no ‘$’ or other punctuation, but the ‘%’ concatenation character is
recognized. The concatenation character is used to separate the token from the other text: for example
RES%K allows RES to be identified as a token, and if RES is ‘1’ the substitution would yield ‘1K’. The
param token must be surrounded by non-alphanumeric characters.

The concatenation character can be set to a different character with the var catchar variable. If this
variable is set to a string consisting of a single punctuation character, then that character becomes the
concatenation character.

WRspice can handle duplicate formal node args in .subckt lines. It does so by assigning a new node
to one of the duplicates, then inserting a voltage source between the two nodes, which is added to the
subcircuit text. This mainly solves a problem related to files generated by Xic. If two or more subcircuit
terminals are attached to the same wire net, the resulting .subckt line will have duplicate nodes. In the

36 CHAPTER 2. WRSPICE INPUT FORMAT

limiting case where a subcircuit consists only of a wire with two connections, the subcircuit would in
addition be empty.

For example, the definition

.subckt xxx 1 1

.ends

is converted to

.subckt xxx 1 #0

v xxx 0 1 #0

.ends

during subcircuit expansion, which avoids an empty subcircuit and has the intended effect of instances
shorting the two terminals together.

2.6.1.1 Subcircuit Expansion

When processing circuit input that contains subcircuits, WRspice will perform “subcircuit expansion”
whereby subcircuit calls are replaced recursively with the subcircuit body text, with the device and node
names translated so as to make them unique in the overall circuit. This “flat” representation, which can
be seen with the listing e command, is the form that is actually parsed to generate the internal circuit
structure used in simulation.

Although this occurs “behind the scenes”, if a user needs to reference nodes or devices within subcir-
cuits, for example in a print or plot command after analysis, the user will need to know the details of
the name mapping employed. The same applies when the user is preparing SPICE input, if, for example,
the user wishes to use the .save keyword with a subcircuit node. In this case, the SPICE deck will
fail to work as intended unless the mapping algorithm assumed by the user is actually employed by the
simulator.

WRspice releases prior to 3.2.15 used the Spice3 algorithm for generating the new node and device
names. Subsequent releases have a new, simpler algorithm as the default, but support for the old
algorithm is retained. The field separation character, used when creating new names, has changed twice
in WRspice evolution. Thus, there is a potential compatibility issue with legacy WRspice input files that
explicitly reference subcircuit nodes, and newer WRspice releases.

There are two variables which set the subcircuit mapping mode and concatenation character.

subc catchar
This can be set to a string consisting of a single punctuation character, which will be used as the
field separation character in names generated in subcircuit expansion. It should be a character that
is not likely to confuse the expression parser. This requirement is rather ambiguous, but basically
means that math operators, comma, semicolon, and probably others should be avoided.

In release 3.2.15 and later the default is ‘.’ (period), which is also used in HSPICE, and provides
nice-looking listings.

In releases 3.2.5 – 3.2.14, the default was ‘ ’ (underscore).

In release 3.2.4 and earlier, and in Spice3, the concatenation character was ‘:’ (colon).

2.6. SUBCIRCUITS 37

subc catmode
This string variable can be set to one of the keywords “wrspice” or “spice3”. It sets the encoding
mode for subcircuit node and device names. In 3.2.15 and later, the “wrspice” mode is the default.
In earlier releases, only the “spice3” mode was available.

The format of the subcircuit node names depends on the algorithm, so SPICE input that explicitly
references subcircuit node names implicitly assuming a certain mapping algorithm will require either
changes to the node names, or specification of the matching algorithm and concatenation character.

These variables can be set from a .options line in SPICE input, so that the easiest way to “fix” an
old file is to add a .options line.

For example, suppose that you run an old deck, and get warnings like “no such vector 0:67”.
From the descriptions below, one can recognize that 1) the Spice3 mode is being used, which will always
be true for old decks, and 2) the concatenation character is ‘:’. Thus, adding the following line to the
file will fix the problem.

.options subc catchar=: subc catmode=spice3

When running from Xic, there should not be compatibility issues, as Xic will automatically recognize
the capabilities of the connected WRspice and compensate accordingly – as long as the hypertext facility
is used to define node names. This is true when point-and-click is used to generate node names. However,
subcircuit node names that for some reason were entered by hand will need to be updated, or a .options

line added as a spice-text label.

2.6.1.2 wrspice Mode

As an example, suppose we have a device line

C126 2 4 50fF

in a subcircuit which is instantiated as a subcircuit instance Xgate, which itself is instantiated at the
top level in a subcircuit instance Xadder. After applying the wrspice algorithm, this line becomes

C126.Xgate.Xadder 2.Xgate.Xadder 4.Xgate.Xadder 50fF

assuming the use of ‘.’ as the concatenation character. Note the straightforwardness of this approach:
one merely starts with the given name (device or node) and appends a concatenation character and
subcircuit instance name, walking up the hierarchy. The ‘x’ or ‘X’ characters of the instance names are
retained.

In addition, if a device model is defined in a subcircuit, the model name is mapped as follows.
Suppose that the subcircuit instantiated as Xgate contained a .model line like

.model foo nmos(...)

The model is only accessible in instances of this subcircuit (and any sub-subcircuits), with the name
mapped to (for example)

.model foo.Xgate.Xadder nmos(...)

38 CHAPTER 2. WRSPICE INPUT FORMAT

Thus models use exactly the same naming convention. Note that models are generated per-instance
rather than per-subcircuit. The reason is that if the subcircuit is parameterized, the model in each
instance may be different, if different parameters are provided to the instances, and model text uses the
parameters.

2.6.1.3 spice3 Mode

The Spice3 encoding is a bit more obscure. Suppose that we have the same example hierarchy as above.
The line maps to

C.adder.gate.126 adder.gate.2 adder.gate.4 50fF

Again, this assumes ‘.’ as the concatenation character, which is a bad choice for this mapping mode
as we shall see. The spice3 mode was historically used with ‘:’ or ‘ ’ as the concatenation character.

For device names, we start with the first character, add a concatenation character, then the top
instance name with the ‘X’ stripped and continue down the hierarchy. Finally, we add a concatenation
character and the remainder of the original device name.

For nodes, we start with the top-level instance name with the ‘X’ stripped, walk down the hierarchy
adding contenation characters and sub-instance names (also with the ‘X’ stripped), and finally append
a concatenation character and the original node name.

For models defined in subcircuits, in the example above, the mapping is

.model adder.gate.foo nmos(...)

What if instead of Xgate and Xadder, the instance names were X0 and X1? The expansion becomes

C.1.0.126 1.0.2 1.0.4 50fF

This is very cumbersome to keep straight. Worse, if the hierarchy is only one-deep, we could get
node names like “0.1”, “1.2”, etc. which are in some cases impossible for the parser to distinguish from
a floating point value. Using a different concatenation character solves this problem, but the names are
still rather opaque.

2.6.2 .ends Line

General Form:
.ends [subnam]

Example:
.ends opamp

The keyword “.eom” is equivalent to “.ends”. The “.ends” is actually a default and the keyword
can be changed by setting the subend variable. The .eom keyword applies in any case.

This line must be the last one for any subcircuit definition. The subcircuit name, if included, indicates
which subcircuit definition is being terminated; if omitted, all subcircuits being defined are terminated.
The name is needed only when nested subcircuit definitions are being made.

2.6. SUBCIRCUITS 39

2.6.3 Subcircuit Calls

General Form:
xname n1 [n2 n3 ...] subnam [param1=val1 param2=val2 ...]

Example:
x1 2 4 17 3 1 multi

Subcircuits are used in WRspice by specifying pseudo-elements beginning with the letter ‘x’ or ‘X’,
followed by the circuit nodes to be used in expanding the subcircuit.

When a circuit is parsed, all devices and local nodes in subcircuits are renamed as

devicetype[sep]subcktname[sep]devicename,

where [sep] is a separation character. In SPICE3 and WRspice prior to release 3.2.4, this was the colon
(‘:’) character. However, this choice can lead to conflicts and parser trouble due to the use of the colon
in the ternary conditional operator a?b:c. In release 3.2.4, the separation character was changed to the
underscore (‘ ’).

The character employed can be set from the shell with the shell variable subc catchar. If this variable
is set to a string consisting of a single punctuation character, then this character becomes the [sep]
character.

Nested subcircuit instances will have multiple [sep]-separated qualifiers.

The names and default values of the params are specified in the .subckt line. During subcircuit
expansion, the param tokens are replaced by their corresponding value tokens in the text. If a list
of params is given in the subcircuit instantiation line, those values will supersede the defaults in that
subcircuit instance, and parameters set in .param lines.

Example:
.subckt resistor 1 2 resis=1k

r1 1 2 resis

.ends

x1 3 4 resistor resis = 500

x2 5 6 resistor

x3 7 8 resistor resis=2k

2.6.4 Subcircuit/Model Cache

General Form:
.cache name
Lines of SPICE input...
.endcache

Example:
.cache block1

.include /users/models/some big library

.endcache

40 CHAPTER 2. WRSPICE INPUT FORMAT

The “models” provided with foundry design kits (for example) have become quite complex, to the
point where loading these files into WRspice can take appreciable time. These files often encapsulate
device calls into subcuits, and use large numbers of parameter definitions that must be processed into
internal tables.

This overhead is annoying when simulating circuits, but can become a real problem when doing
repetitive simulations such as for Monte Carlo analysis or when under control of a looping script. The
caching feature enables one to load these definitions once only, on the first pass. Subsequent runs will
reuse the internal representations, which can avoid most of the overhead.

The “.cache” and “.endcache” SPICE file keywords are used to identify lines of an input deck
which will be cached. This syntax is non-standard and available only in WRspice.

The name is any short alpha-numeric name token, used to identify the cache block created. The
cached representation of the enclosed lines is saved in WRspice memory under this name.

Presently, there can be only one .cache block per circuit deck. The first time the name is seen, the
enclosed lines are processed normally but internal representations are saved. Subsequently, the enclosed
lines are skipped. The skipping occurs very early in the sourcing operation, before .include and similar
lines are read. So, for the example, the access to some big library is skipped entirely in subsequent
runs.

If a different SPICE input file is sourced, and this has a .cache block with the same name as the
first, the cached parameters from the first file will be used in the second file. The internal representation
of the cache block has no attachment to any particular input file.

The Lines of SPICE input... which can appear between .cache and .endcache can be, after
.include/.lib expansion:

1. Subcircuit definitions, which must include all lines of the definition including the .subckt or
.macro line and corresponding .ends or .eom line.

2. Model definitions, starting with .model.

3. Parameter definitions, starting with .param.

4. Comment lines.

The block can contain any of the .include/.lib family of lines, but after these lines are expanded,
the resulting text should contain only the forms listed above. Anything else that appears in the cache
block will likely cause an error, as it will be “missing”.

The parameters from .param lines saved in the cache will override parameters of the same name
defined elsewhere in the circuit file.

The subcircuit/model cache can be manipulated with the WRspice cache command.

2.7 Analysis Specification

WRspice provides the analysis capabilities tabulated below. Monte Carlo and operating range analysis
(described in Chpt. 5) require a special input file format, while other types of analysis can be specified
in a standard input deck.

Analyses will pause if WRspice receives an interrupt signal, i.e., the user types Ctrl-C while WRspice

has the keyboard focus. The resume command can be used to resume the analysis.

2.7. ANALYSIS SPECIFICATION 41

By default, the maximum size of the data produced by an analysis run is limited to 256Mb. This can
be changed by setting the variable maxdata to the desired value in Kb, using the set command or the
Sim Defs tool from the Tools menu of the Tool Control window. In transient analysis, if the steptype
is not set to “nousertp”, the run will abort at the beginning if the memory would exceed the limit.
Otherwise, the run will end when the limit is reached.

The table below lists the basic analysis types and input file keyword.

.ac AC Small-Signal Analysisa

.dc DC Analysisa

.disto Small-Signal Distortion Analysisa

.noise Small-Signal Noise Analysisa

.op Operating Pointa

.pz Pole-Zero Analysisa

.sens DC or Small-Signal AC Sensitivity Analysisa

.tf DC or Small-Signal AC Transfer Function Analysisa

.tran Transient Analysisa

An operating point analysis is performed implicitly before other types of analysis, with the exception
of transient analysis when the uic keyword is given. This solves for the initial DC operating point of the
circuit. The circuit is linearized at this point for AC/small signal analysis (including pole-zero, transfer
function, and noise analysis). It is the starting point for DC and transient analysis.

WRspice has an exclusive multi-dc analysis feature. This allows ac, noise, transfer function, sensitivity,
and transient analyses to have an additional dc sweep specification, resulting in the analysis being
performed at each dc operating point, producing a multi-dimensional output plot.

For exampls:

Example:
.ac dec 10 1Hz 1Khz dc v1 0 2 .1 v2 4.5 5.5 .25

This will perform an ac analysis with the dc sources v1 and v2 stepped through the respective
ranges. The resulting output vectors will have dimensions [5,21,61], as can be seen with the display
command interactively. This represents 61 points of frequency data at 21 v1 values at 5 v2 values.
Typing “plot v(1)” (for example) would plot all 21*5 analyses on the same scale (you probably don’t
want to do this). One can also type (as examples) “plot v(1)[1]” to plot the results for v2 = 4.75,
or “plot v(1)[0][1]” for v2 = 4.5, v1 = .1, etc. Range specifications also work, for example “plot
v(1)[2][0,2]” plots the values for v2 = 5.0, v1 = 0.0, 0.1, 0.2.

Warning: The memory space required to hold the plot data can grow quite large, so be reasonable.

2.7.1 .ac Line

The ac small-signal portion of WRspice computes the ac output variables as a function of frequency.
The program first computes the dc operating point of the circuit and determines linearized, small-signal
models for all of the nonlinear devices in the circuit. The resultant linear circuit is then analyzed over a
user-specified range of frequencies. The desired output of an ac small-signal analysis is usually a transfer
function (voltage gain, transimpedance, etc). If the circuit has only one ac input, it is convenient to set
that input to unity and zero phase, so that output variables have the same value as the transfer function
of the output variable with respect to the input.

42 CHAPTER 2. WRSPICE INPUT FORMAT

General Form:
.ac dec|oct|lin np fstart fstop [dc dc args]

Examples:
.ac dec 10 1 10k

.ac dec 10 1k 100meg

.ac lin 100 1 100hz dc vcc 10 15 5

.ac dec 10 1meg 1g dc vdd 5 7.7 .25

The keyword dec specifies decade variation, with np the number of points per decade. The keyword
oct specifies octave variation, with np the number of points per octave, and lin specifies linear variation,
with np the number of points. The two parameters fstart (the starting frequency), and fstop (the final
frequency) complete the basic analysis specification. If this line is included in the circuit file, WRspice

will perform an ac analysis of the circuit over the specified frequency range. Note that in order for this
analysis to be meaningful, at least one voltage or current source must have been specified with an ac

value.

The optional dc sweep is a dc analysis specification which will cause the ac analysis to be performed
at each point of the dc sweep. The small-signal parameters are reevaluated at every sweep point, and
the output vectors will be multidimensional.

In interactive mode, the ac command, which takes the same arguments as the .ac line, can be used
to initiate ac analysis.

AC analysis is not available if Josephson junctions are included in the circuit.

2.7.2 .dc Line

The dc analysis portion of WRspice determines the dc operating point of the circuit with inductors
shorted and capacitors opened. The dc analysis is used to generate dc transfer curves: a specified
voltage or current source is stepped over a user-specified range and the dc output variables are stored
for each sequential source value.

General Form:
.dc src1 start1 [stop1 [incr1]] [src2 start2 [stop2 [incr2]]]

Examples:
.dc vin 0.25 5.0 0.25

.dc vds 0 10 .5 vgs 0 5 1

.dc vce 0 10 .25 ib 0 10u 1u

.dc vdd 5 6

The .dc line defines the dc transfer curve source and sweep limits. The variation may be in one or
two dimensions, depending upon whether the second block is provided. The src parameter is the name
of a voltage or current source to vary. The start , stop, and incr parameters are the starting, final, and
incrementing values, respectively. If incr parameter is not supplied, analysis will be performed at the
start and stop. If in addition the stop parameter is not given, analysis will be performed at start , i.e.,
the level is fixed. A parameter can be omitted only if all parameters to the right are also omitted.

A second source (src2) may optionally be specified with associated sweep parameters. In this case,
the first source will be swept over its range for each value of the second source. This option can be useful
for obtaining semiconductor device output characteristics.

2.7. ANALYSIS SPECIFICATION 43

The first example will cause the value of the voltage source vin to be swept from 0.25 volts to 5.0
volts in increments of 0.25 volts.

In WRspice, other types of analysis (ac, noise, transfer function, sensitivity, and transient) can be
chained to a dc analysis specification. In this case, the requested analysis is performed at each successive
operating point, as specified by the dc part of the analysis specification. The resulting circuit variables
are saved as multi-dimensional vectors, which can subsequently be saved in a rawfile or plotted (together
or as individual traces).

In interactive mode, the dc command, which takes the same arguments as the .dc line, can be used
to initiate dc analysis.

If Josephson junctions are present in the circuit, they will be taken as shorted (actually, a resis-
tance of 1uV/Ic) during DC analysis. It is in general not possible to perform this type of analysis
on Josephson junctions. The approach taken here may be useful when working with hybrid semicon-
ductor/superconductor circuits, but in no case should one expect DC analysis of Josephson circuits to
“work”. Transient analysis, which takes into account the past history of the Josephson excitation, is
required for a complete simulation.

2.7.3 .disto Line

The distortion analysis portion of WRspice computes steady-state harmonic and intermodulation prod-
ucts for small input signal magnitudes. If signals of a single frequency are specified as the input to
the circuit, the complex values of the second and third harmonics are determined at every point in the
circuit. If there are signals of two frequencies input to the circuit, the analysis finds the complex values
of the circuit variables at the sum and difference of the input frequencies, and at the difference of the
smaller frequency from the second harmonic of the larger frequency.

Distortion analysis is supported in WRspice only through residual incorporation from code imported
from Berkeley SPICE3. This code is particularly complex, poorly documented, and ugly. Distortion
analysis has not been tested, and may not work.

Distortion analysis is included for the following nonlinear devices: diodes, bipolar transistors, JFETs,
MOSFETs (levels 1, 2, 3 and BSIM1) and MESFETS. All linear devices are automatically supported by
distortion analysis. If there are switches present in the circuit, the analysis will continue to be accurate
provided the switches do not change state under the small excitations used for distortion calculations.

General Form:
.disto dec|oct|lin np fstart fstop [f2overf1] [dc dc args]

Examples:
.disto dec 10 1khz 100mhz

.disto dec 10 1khz 100mhz 0.9

A multi-dimensional Volterra series analysis is performed using a multi-dimensional Taylor series to
represent the nonlinearities at the operating point. Terms of up to third order are used in the series
expansions.

If the optional parameter f2overf1 is not specified, a harmonic analysis is performed — i.e., distortion
is analyzed in the circuit using only a single input frequency f1, which is swept as specified by arguments
of the .disto line exactly as in an .ac line. Inputs at this frequency may be present at more than one
input source, and their magnitudes and phases are specified by the arguments of the distof1 keyword

44 CHAPTER 2. WRSPICE INPUT FORMAT

in the input file lines for the input sources. The arguments of the distof2 keyword are not relevant
in this case. The analysis produces information about the ac values of all node voltages and branch
currents at the harmonic frequencies 2f1 and 3f1, vs. the input frequency f1 as it is swept. A value of
1 (as a complex distortion output) signifies cos(2π(2f1)t) at 2f1 and cos(2π(3f1)t) at 3f1, using the
convention that 1 at the input fundamental frequency is equivalent to cos(2πf1t).

The distortion component desired (2f1 or 3f1) can be selected using commands in WRspice, and then
printed or plotted. Normally, one is interested primarily in the magnitude of the harmonic components,
so the magnitude of the ac distortion value is considered. It should be noted that these are the ac values
of the actual harmonic components, and are not equal to HD2 and HD3. To obtain HD2 and HD3, one
must divide by the corresponding ac values at f1, obtained from an .ac line. This division can be done
using WRspice commands.

If the optional f2overf1 parameter is specified, it should be a real number between (and not equal
to) 0.0 and 1.0; in this case, a spectral analysis is performed. The circuit is considered with sinusoidal
inputs at two different frequencies f1 and f2. Frequency f1 is swept according to the .disto line options
exactly as for the .ac card. Frequency f2 is kept fixed at a single frequency as f1 sweeps — the value
at which it is kept fixed is equal to f2overf1*fstart . Each voltage and current source in the circuit may
potentially have two (superimposed) sinusoidal inputs for distortion, at the frequencies f1 and f2. The
magnitude and phase of the f1 component are specified by the arguments of the distof1 keyword in the
source’s input line, as described in 2.15; the magnitude and phase of the f2 component are specified by
the arguments of the distof2 keyword. The analysis produces plots of all node voltages/branch currents
at the intermodulation product frequencies f1 + f2, f1 − f2, and (2f1) − f2, vs the swept frequency
f1. The IM product of interest may be selected using the setplot command, and displayed with the
print and plot commands. As in the harmonic analysis case, the results are the actual ac voltages and
currents at the intermodulation frequencies, and need to be normalized with respect to .ac values to
obtain the IM parameters.

If the distof1 or distof2 keywords are missing from the description of a voltage or current source,
then that source is assumed to have no input at the corresponding frequency. The default values of the
magnitude and phase are 1.0 and 0.0 respectively. The phase should be specified in degrees.

It should be noted that the number f2overf1 should ideally be an irrational number, and that since this
is not possible in practice, efforts should be made to keep the denominator in its fractional representation
as large as possible, certainly above 3, for accurate results. If f2overf1 is represented as a fraction A/B,
where A and B are integers with no common factors, B should be as large as possible. Note that A < B
because f2overf1 is constrained to be < 1). To illustrate why, consider the cases where f2overf1 is 49/100
and 1/2. In a spectral analysis, the outputs produced are at f1 + f2, f1 − f2 and 2f1 − f2. In the
latter case, f1−f2 = f2, so the result at the f1−f2 component is erroneous because there is the strong
fundamental f2 component at the same frequency. Also, f1+f2 = 2f1−f2 in the latter case, and each
result is erroneous individually. This problem is not seen in the case where f2overf1 = 49/100, because
f1 − f2 = 51/100f1 which is not equal to 49/100f1 = f2. In this case, there will be two very closely
spaced frequency components at f2 and f1− f2. One of the advantages of the Volterra series technique
is that it computes distortions at mix frequencies expressed symbolically (i.e. n·f1 ± m·f2), therefore one
is able to obtain the strengths of distortion components accurately even if the separation between them
is very small, as opposed to transient analysis for example. The disadvantage is of course that if two
of the mix frequencies coincide, the results are not merged together and presented, though this could
presumably be done as a postprocessing step. Currently, the interested user should keep track of the
mix frequencies and add the distortions at coinciding mix frequencies together should it be necessary.

The optional dc sweep is a dc analysis specification which will cause the distortion analysis to be
performed at each point of the dc sweep. The small-signal parameters are reevaluated at every sweep
point, and the output vectors will be multidimensional.

2.7. ANALYSIS SPECIFICATION 45

In interactive mode, the disto command, which takes the same arguments as the .disto line, can
be used to initiate distortion analysis.

Distortion analysis is not available if Josephson junctions are included in the circuit.

2.7.4 .noise Line

The noise analysis portion of WRspice performs analysis of device-generated noise for the given circuit.
When provided with an input source and an output node or current, the analysis calculates the noise
contributions of each device (and each noise generator within the device) to the output node voltage
or current. It also calculates the level of input noise from the specified input source to generate the
equivalent output noise. This is done for every frequency point in a specified range — the calculated
value of the noise corresponds to the spectral density of the circuit variable viewed as a stationary
Gaussian stochastic process.

After calculating the spectral densities, noise analysis integrates these values over the specified fre-
quency range to arrive at the total noise voltage/current (over this frequency range). This calculated
value corresponds to the variance of the circuit variable viewed as a stationary Gaussian process.

General Form:
.noise out src dec|oct|lin pts fstart fstop [summary pts] [dc dc args]

Examples:
.noise v(5) vin dec 10 1khz 100mhz

.noise v(5,3) v1 oct 8 1.0 1.0e6 1 dc vee -5 -3 1

Above, out represents the output, which can be a node voltage in the standard form

v(out [,ref])

or the current through a voltage source (or inductor) in one of the standard and equivalent forms

Vsource
Vsource#branch
i(Vsource)

This directive initiates a noise analysis of the circuit. The parameter out is the point at which the
total output noise is desired, and if this is a voltage and ref is specified, then the noise voltage v(out) -
v(ref) is calculated. By default, ref is assumed to be ground. The parameter src is the name of a voltage
or current source to which input noise is referred, with pts, fstart and fstop being the .ac parameters
that specify the frequency range over which analysis is desired. The optional summary pts is an integer;
if specified, the noise contributions of each noise generator is produced every summary pts frequency
points.

The .noise analysis produces two plots — one for the Noise Spectral Density curves and one for
the total Integrated Noise over the specified frequency range. All noise voltages/currents are in squared
units (V2/Hz and A2/Hz for spectral density, V2 and A2 for integrated noise).

The optional dc sweep is a dc analysis specification which will cause the noise analysis to be performed
at each point of the dc sweep. The small-signal parameters are reevaluated at every sweep point, and
the output vectors will be multidimensional.

46 CHAPTER 2. WRSPICE INPUT FORMAT

In interactive mode, the noise command, which takes the same arguments as the .noise line, can
be used to initiate noise analysis.

Noise analysis is not available if Josephson junctions are included in the circuit.

2.7.5 .op Line

General Form:
.op

The inclusion of this line in an input file will force WRspice to determine the dc operating point of the
circuit with inductors shorted and capacitors opened. This is done automatically prior to most other
analyses, to determine the operating point of the circuit, yielding transient initial conditions or the
linearized models for nonlinear devices for small-signal analysis. It will not be done in transient analysis
if the uic keyword is given in the transient analysis specification.

WRspice performs a dc operating point analysis if no other analyses are requested.

In interactive mode, the op command can be used to compute the operating point.

Operating point analysis will fail due to a singular circuit matrix if the circuit topology contains
inductor and/or voltage source loops. Circuits containing such loops can only be simulated in transient
analysis using the uic keyword in the analysis command, which will cause the operating point analysis
to be skipped. On convergence failure, WRspice will check for and print a list of inductor and voltage
source names found to be connected in loops. The dual situation of current source/capacitor cut sets
will often converge in operating point analysis, as there is an added minimum conductance which will
keep the solution finite (but huge).

If Josephson junctions are present in the circuit, they will be taken as shorted (actually, a resis-
tance of 1uV/Ic) during operating point analysis. It is in general not possible to perform this type
of analysis on Josephson junctions. The approach taken here may be useful when working with hy-
brid semiconductor/superconductor circuits, but in no case should one expect operating point analysis
of Josephson circuits to “work”. Transient analysis, which takes into account the past history of the
Josephson excitation, is required for a complete simulation.

When computing the initial operating point for transient analysis, after the operating point is cal-
cualted with Josephson junctions shorted, the Josephson junctions will be given any specified initial
voltage and phase (or these will be reset to exactly zero with no initial conditions given). Thus, the
Josephson junctions are always “uic”, but the circuit is not in uic mode unless uic is actually given in
the transient analysis command.

In operating point analysis, any .save or save directives will be ignored. All node voltages and
branch currents will be saved in an ”op” plot in interactive mode.

Given that operating point analysis is the starting point of most types of analysis, it is critical
that this step succeeds. Unfortunately, many circuits are prone to convergence failure at this step, and
achieving DC convergence has been one of the traditional battles when using SPICE simulators.

The original operating point calculation algorithm, which was very similar to the SPICE3 algorithm,
was really pretty poor. For example, when attempting to simulate a large CMOS mixed-signal circuit,
the old convergence algorithm would iterate for several minutes before ultimately failing. On the other
hand, HSPICE could find the operating point within seconds (if that).

Lots of work was done to improve this, and a new algorithm is now the default in release 3.2.15 and
later. The new algorithm seems to work pretty well, and the Berkeley algorithms have been retained

2.7. ANALYSIS SPECIFICATION 47

as alternatives. There is flexibility in algorithm choice, giving the user some tools needed to obtain
convergence of their circuits with the fewest iterations (quickest convergence).

There are two basic ways to solve for the circuit operating point. In “gmin stepping”, a conductance
is applied between every circuit node and ground. When this conductance is large enough, convergence
can always be achieved. The conductance is then progressively reduced, while continuing to solve the
circuit equations with the previous solution as a starting point. If all goes well, convergence is maintained
when the conductance approaches zero, and the method succeeds.

The second method is “source stepping”. In this method, all voltage and current sources are set to
zero initially, where the circuit is guaranteed to have a trivial solution with every node at zero voltage.
The sources are progressively ramped up, while solving the circuit equations using the previous solution
as the starting point. Ultimately, if convergence is maintained when the sources reach their true values,
the method succeeds.

The original Berkeley algorithm is as follows. First, unless the option variable noopiter is set, an
attempt is made to solve the equation set directly, without using stepping. If convergence is acheived
within the number of iterations specified by the itl1 variable (default 400), the operating point analysis
succeeds.

If, as is likely, the initial attempt fails, gmin stepping is attempted. In the Berkeley algorithm, the
conductance is reduced by a factor of 10 for each gmin step. If convergence is maintained through all
steps, a final solution is attempted with no added conductance, and if this too succeeds, operating point
analysis succeeds. However, it is possible that at some step, convergence will fail, and thus gmin stepping
will fail.

If gmin stepping fails, or is not attempted, source stepping is tried. In the Berkeley algorithm, each
source step is a fixed percentage of the final value. If convergence is maintained through all steps, then
operating point analysis succeeds. Otherwise, the user will have to alter the circuit or change parameters
to coerce convergence in a subsequent run.

The number of gmin and source steps is set by the option variables gminsteps and srcsteps, both
default to 10 in SPICE3, and in earlier versions of WRspice.

The new algoritm uses “dynamic” stepping, for both gmin and source. In dynamic stepping, if a step
fails, the step size is cut, and the calculation is repeated. If the step size is cut below a threshold after
repeated failures, the method is exited with failure. On the other hand, if convergence is achieved with
just a few iterations, then the step size is increased. This method is far more effective than the original
approach. This concept was borrowed from the open-source NGSPICE project.

The new algorithm is invoked when both the gminsteps and srcsteps values are 0, which are the
current defaults (these can be set from the Convergence page of the Sim Defs tool). If either is
positive, a modified SPICE3 algorithm is used. If negative (-1 is now an allowed value) that convergence
method will not be attempted. If both are negative, a direct solution will be attempted, whatever the
state of the noopiter option variable.

The new algorithm is the following. If either gminsteps or srcsteps is positive, we are in a quasi-
SPICE3 compatibility mode. In this case, if the noopiter variable is not set, the first task is to Newton
iterate the matrix to attempt direct convergence. If convergence is not achieved in an iteration count
given by the value of the itl1 variable, this is aborted, and the stepping options are attempted.

This initial direct convergence attempt can be very time-consuming and is rarely successful for large
circuits, thus it is not done unless

1. as above, either of gminsteps or srcsteps is positive, and noopiter is not set.

48 CHAPTER 2. WRSPICE INPUT FORMAT

2. if gminsteps and srcsteps are both -1. Direct convergence will be attempted whether or not noopiter
is set in this case.

For very simple sircuits, when the direct method succeeds, this will probably yield the fastest oper-
ating point calculation. However, in these simple cases the difference is too small to be noticeable by
the user, although in some automated tasks the accumulated time difference might be important.

By default, the next attempt will use source stepping. This is different from SPICE3, which would
attempt gmin stepping before source stepping. However, it appears that source stepping is more effective
on large CMOS circuits, so we try it first. However, if the option variable gminfirst is set, gmin stepping
will be attempted before source stepping.

The default value of srcsteps is 0, which indicates use of the new dynamic source stepping algorithm.
This algorithm takes variable-sized steps when raising the source values to their specified initial values,
and backs up and tries again with a smaller step on failure. The SPICE3 source stepping takes fixed-size
steps, and aborts on failure. The dynamic approach is far more effective. If srcsteps is positive, the
SPICE3 approach will be used, with the given number of steps. If srcsteps is -1, source stepping will be
skipped.

The gmin stepping, which is attempted if convergence has not been achieved, is similar. The default
value of the gminsteps option variable is 0, indicating use of the dynamic gmin stepping algorithm. This
reduces the “gmin” conductivity that is added to the circuit to achieve convergence in variable sized
increments. If convergence fails, a smaller step is tried. The SPICE3 gmin stepping algorithm uses fixed-
size steps (actually, orders of magnitude) when reducing gmin, and if convergence fails, the operation
is aborted. This is done if gminsteps is given a positive value. The dynamic algorithm is much more
effective. If gminsteps is given a value -1, gmin stepping is not done.

Another difference between WRspice and Berkeley SPICE is that in WRspice, the minimum value
of conductance allowed on the matrix diagonal, in any analysis mode, is the value of the gmin option
variable. This defaults to 10−12Si. This avoids a singular matrix in various cases, such as series capacitors
in DC analysis, or elements that have a floating node.

There are option variables which set the number of iterations to allow between steps when using
the dynamic stepping algorithms. These are itl2gmin and et itl2src, both of which default to 20. The
“itl2” prefix derives from the fact that in earlier versions of WRspice, the DC sweep iteration limit was
used, which is set with the ¡a href=”itl2”¿¡tt¿itl2¡/tt¿¡/a¿ variable and defaults to 100. It is probably
counter-intuitive that reducing this number is a good thing, however this proved to be effective in solving
some difficult convergence problems, in particular with some of the Verilog-A bipolar transistor models
(hicum2, mextram). What happens is that when iterating and not converging, the computed matrix
element entries can blow up to a point where the matrix becomes singular, and the run aborts. With
the smaller iteration limit, the limit is reached before the matrix becomes singular, so the step gracefully
fails, and a smaller step is then attempted, which converges.

Operating point analysis can be halted by the user by pressing Ctrl-C. However, unlike other analysis
types, it can not be resumed.

If the trantrace debugging variable is set to a nonzero value, during operating point analysis, messages
will be printed giving information about the analysis, including iteration counts and stepsize. This applies
for any operating point calculation, not just in transient analysis.

The dcmu option variable can be used to improve convergence during operating point analysis. This
variable takes a value of 0.0–0.5, with the default being 0.5. When set to a value less than 0.5, the
Newton iteration algorithm mixes in some of the previous solution, which can improve convergence. The
smaller the value, the larger the mixing. This gives the user another parameter to twiddle when trying
to achieve DC convergence. This can be set from the Convergence page of the Sim Defs tool.

2.7. ANALYSIS SPECIFICATION 49

2.7.6 .pz Line

The pole-zero analysis portion of WRspice computes the poles and/or zeros in the small-signal ac transfer
function. The program first computes the dc operating point and then determines the linearized, small-
signal models for all the nonlinear devices in the circuit. This circuit is then used to find the poles and
zeros.

Two types of transfer functions are allowed: one of the form (output voltage)/(input voltage) and
the other of the form (output voltage)/(input current). These two types of transfer functions cover all
the cases and one can find the poles/zeros of functions like input/output impedance and voltage gain.
The input and output ports are specified as two pairs of nodes.

The pole-zero analysis works with resistors, capacitors, inductors, linear controlled sources, indepen-
dent sources, BJTs, MOSFETs, JFETs and diodes. Transmission lines and Josephson junctions are not
supported.

General Form:
.pz node1 node2 node3 node4 cur|vol pol|zer|pz

Examples:
.pz 1 0 3 0 cur pol

.pz 2 3 5 0 vol zer

.pz 4 1 4 1 cur pz

The keyword cur stands for a transfer function of the type (output voltage)/(input current) while
vol stands for a transfer function of the type (output voltage)/(input voltage). The keyword pol stands
for pole analysis only, zer for zero analysis only and pz for both. This feature is provided mainly because
if there is a nonconvergence in finding poles or zeros, then, at least the other can be found. Finally,
node1 and node2 are the two input nodes and node3 and node4 are the two output nodes. Thus, there
is complete freedom regarding the output and input ports and the type of transfer function.

In interactive mode, the pz command, which takes the same arguments as the .pz line, can be used
to initiate pole-zero analysis.

Pole-zero analysis is not available if Josephson junctions are included in the circuit.

2.7.7 .sens Line

General Form:
.sens outvar [ac dec|oct|lin np fstart fstop] [dc dc args]

Examples:
.sens v(1,out)

.sens v(out) ac dec 10 100 100k

.sens i(vtest)

The sensitivity of outvar to all non-zero device parameters is calculated when the sensitivity analysis
is specified. The parameter outvar is a circuit variable (node voltage or branch current). Without the ac
specification, the analysis calculates sensitivity of the DC operating point value of outvar . If an ac sweep
specification is included, the analysis calculates sensitivity of the ac values of outvar . The parameters

50 CHAPTER 2. WRSPICE INPUT FORMAT

listed for ac sensitivity are the same as in an ac analysis. The output values are in dimensions of change
in output per unit change of input (as opposed to percent in output or per percent of input).

The optional dc sweep is a dc analysis specification which will cause the sensitivity analysis to be
performed at each point of the dc sweep. The small-signal parameters are reevaluated at every sweep
point, and the output vectors will be multidimensional.

In interactive mode, the sens command, which takes the same arguments as the .sens line, can be
used to initiate sensitivity analysis.

Sensitivity analysis is not available if Josephson junctions are included in the circuit.

2.7.8 .tf Line

General Form:
.tf outsrc | v(n1[,n2]) insrc [ac dec|oct|lin np fstart fstop] [dc dc args]

Examples:
.tf v(5,3) vin

.tf I(vload) vin ac dec 10 1 1e12

.tf v(2) vin ac dec 10 1 1meg

.tf v(4) vx dc vcc 5 10 1

.tf v(5) vy ac dec 10 1 1meg dc 5 10 1

The .tf line defines the small-signal output and input for the dc or ac small-signal analysis. The
first parameter is the small-signal output variable (node voltage or name of inductor or voltage source
for branch current) and insrc is the small signal input source. If this line is included, WRspice computes
the dc or ac small-signal value of the transfer function (output/input), input resistance or impedance,
and output resistance or impedance. For the first example, WRspice would compute the ratio of v(5,3)
to vin, the small signal input resistance at vin, and the small-signal output resistance measured across
nodes 5 and 3. If the ac parameters are given, the .tf line produces output vectors representing the
impedance and other parameters at each frequency point.

The optional dc sweep is a dc analysis specification which will cause the transfer function analysis to
be performed at each point of the dc sweep. The small-signal parameters are reevaluated at every sweep
point, and the output vectors will be multidimensional.

In interactive mode, the tf command, which takes the same arguments as the .tf line, can be used
to initiate transfer function analysis.

Transfer function analysis is not available if Josephson junctions are included in the circuit.

2.7.9 .tran Line

The transient analysis portion of WRspice computes the transient output variables as a function of time
over a user-specified time interval. The initial conditions are automatically determined by a dc analysis.
All sources which are not time dependent (for example, power supplies) are set to their dc value. The
transient time interval is specified on a .tran control line.

General Form:
.tran tstep1 tstop1 [[start=]tstart1 [tmax]] [tstep2 tstop2 ... tstepN tstopN] [uic]

[scroll | segment base delta] [dc dc args]

2.7. ANALYSIS SPECIFICATION 51

Examples:
.tran 1ns 100ns

.tran 1ns 1000ns 500ns

.tran 10ns 1us uic

The tstep values are the printing or plotting increments for output, in the ranges

tstep1 : tstart <= time < tstop1
tstep2 : tstop1 <= time < tstop2

...
tstepN : tstopN-1 <= time < tstopN

The tstart is the initial time, assumed 0 if not given. This can be preceded by a “start=” keyword,
for HSPICE compatibility. The transient analysis always begins at time zero internally. In the interval
[0, tstart), the circuit is analyzed (to reach a steady state), but no outputs are stored. Subsequently,
the circuit is analyzed and outputs are stored. The parameter tmax is the maximum internal timestep
size that WRspice will use. The internal timestep is computed dynamically from the circuit. The output
generated at the specified tstep points is interpolated from the “real” internal time points. The tmax
parameter can be used when one wishes to guarantee a computing interval which is smaller than the
output increment, tstep.

The uic keyword (use initial conditions) is an optional keyword which indicates that the user does
not want WRspice to solve for the quiescent operating point before beginning the transient analysis. If
this keyword is specified, WRspice uses the values specified using ic=... on the various elements as the
initial transient condition and proceeds with the analysis. If the .ic line has been given, then the node
voltages on the .ic line are used to compute the initial conditions for the devices. See the description
of the .ic line (2.4.2) for its interpretation when uic is not specified.

If Josephson junctions are present in the circuit, if uic is not given, the operating point is computed
taking the Josephson junctions as shorted (actually, a resistance of 1uV/Ic). After this, the Josephson
junctions will be given any specified initial voltage and phase (or these will be reset to exactly zero with
no initial conditions given). Thus, the Josephson junctions are always “uic”, but the circuit is not in
uic mode unless uic is actually given in the transient analysis command.

In addition, with Josephson junctions present the value of current flowing through all inductors in
the circuit is reset to zero before transient analysis and after the operating point is calculated. This is
required to enforce the flux and Josephson phase relationship around loops of Josephson junctions and
inductors. The algorithm requires that both phase and flux start at zero, and evolve acording to the
forces applied by the rest of the circuit.

In 3.2.11 and earlier releases, the presence of Josephson junctions would automatically cause simula-
tion in uic mode. as if “uic” was included in the tran command. In releases after 3.2.11, the presence
of Josephson junctions does not automatically specify uic mode. Instead, as with simulations without
Josephson junctions, a dc operating point calculation is performed to obtain the initial node voltages,
which are used as the starting point for transient analysis. If Josephson junctions are present, the calcu-
lated inductor currents are zeroed before transient analysis starts, which is a technical requirement for
maintaining the flux/phase relationship in JJ/inductor loops.

If a circuit containing Josephson junctions has all sources with a time=0 value of zero, then it is
possible to give uic explicitly in the tran command line. This will avoid the dc operating point analysis,
and therefor perhaps simulate slightly faster.

If a circuit has sources that have nonzero time=0 values, it is not recommended to give uic, though
it will typically work. Effectively, there is a large initial transient, which may initialize multi-valued
Josephson circuits into an unexpected mode, or produce other undesirable effects.

52 CHAPTER 2. WRSPICE INPUT FORMAT

The advantage of the present non-uic approach when simulating with Josephson junctions is that it
facilitates simulating hybrid semiconductor/superconductor circuits. In this case, a dc operating point
calculation is generally needed to initialize the semiconductor circuitry.

The scroll keyword is useful in the tran command in interactive mode. If the scroll keyword
is given, the simulation will continue indefinitely, until stopped by a stop command or interrupt. The
time range of data tstop - tstart behind the current time is retained in the plot.

If the segment keyword is given, along with a character string token base and real value delta,
individual rawfiles are output for each range of delta as the simulation advances. The internal plot data
are cleared after each segment is output. The files are named with the base given, as base.s00, base.s01,
etc. This will not happen if a rawfile is being produced. If scroll is also given, it is ignored. If a
dc analysis is chained, it is legitimate to pass a delta of zero, in which case a file is produced for each
cycle. Otherwise, the delta should be a multiple or submultiple of tstop, or the files will be difficult to
interpret. It is an error if delta is nonpositive if there is no chained dc analysis. The purpose of this
feature is to facilitate extremely lengthly transient analysis runs.

The optional dc sweep is a dc analysis specification which will cause the transient analysis to be
performed at each point of the dc sweep. The dc operating point is reevaluated at every sweep point,
and output vectors will be multidimensional. The optional parameters before dc can be omitted in this
case, as the parser recognizes the “dc” keyword as the start of a dc sweep specification. If the scroll

keyword is given, the dc sweep is not available.

In interactive mode, the tran command, which takes the same arguments as the .tran line, can be
used to initiate transient analysis.

During transient analysis, a special vector @delta maps to the (most recent) internal time step. To
use in a plot, it must be saved first (using a .save line or the save command). It is sometimes useful
or interesting to see how the internal timestep varies in a simulation.

2.8 Output Generation

In these lines, outputs can be specified using the SPICE2 notation. The form is vxx(node1[,node2]),
or ixx(branch device). The xx can be left out, indicating the basic voltage or current, or be one of the
following.

m Magnitude
p Phase
r Real part
i Imaginary part
db Decibel value (20log10)

These forms are not usually needed for other than ac analysis. The (node1, node2) notation indicates
a voltage difference between nodes node1 and node2. If node2 and the associated comma are left out, the
ground node is assumed. Output variables for noise, distortion, and some other analyses have a different
general form. See the description of the analysis for the output variable names.

2.8.1 .save Line

General Form:
.save [output] vector vector ...

2.8. OUTPUT GENERATION 53

Examples:
.save i(vin) v(3)

.save @m1[id] vm(3,2)

When a rawfile is produced, the vectors listed in the .save line are recorded in the rawfile. The
standard vector names are accepted; for the form v(a, b), the vectors v(a) and v(b) are saved (not
the difference vector). The voltage vector(s) are saved for each of the forms vm, vp, vr, vi, and vdb.
Similarly, the branch current is saved on mention of any of the corresponding i forms. A token without
parenthesis is interpreted as a node name, e.g. , “1” implies v(1) is saved.

If no .save line is given or no entries are found, then all vectors produced by the analysis are saved.
If .save lines are given, only those vectors specified are saved. The keyword “output” specifies that the
the vector names found in all .print, .plot, and .four lines are to be saved, in addition to any vectors
listed on the .save lines.

In WRspice release 3.2.11 and later, the keyword .probe is a synonym for .save. This is for rough
compatibility with other simulators.

There is an analogous save command available within WRspice.

2.8.2 .print Line

General Form:
.print prtype ov1 [ov2 ... ov8]

Examples:
.print tran v(4) i(vin)

.print dc v(2) i(vsrc) v(23,17)

.print ac vm(4,2) vr(7) vp(8,3)

The .print line defines the contents of a tabular listing of one to eight output variables. The
parameter prtype is the type of the analysis (dc, ac, tran, noise, etc.) for which the specified outputs
are desired. Variables can take the forms tabulated above. The actual format recognized is that of the
print command, which is far more general. There is no limit on the number of .print lines for each
type of analysis.

2.8.3 .plot Line

General Form:
.plot pltype ov1 [ov2 ...] [(min,max)]

Examples:
.plot dc v(4) v(5) v(1)

.plot tran v(17,5) (2,5) i(vin) v(17) (1,9)

.plot ac vm(5) vm(31,24) vdb(5) vp(5)

.plot disto hd2 hd3(R) sim2

.plot tran v(5,3) v(4) (0,5) v(7) (0,10)

The .plot line defines the contents of one plot from one or more output variables. In SPICE2, the
number of variables was limited to eight, but WRspice has no preset limit. In SPICE2, each variable could

54 CHAPTER 2. WRSPICE INPUT FORMAT

be followed by a comma-separated pair of numbers in parentheses which indicated the plotting range.
WRspice supports this construct only as the last argument, and it applies to all variables. The parameter
pltype is the type of analysis (ac, dc, tran, etc.) for which the specified outputs are desired. The syntax
for the ovN is identical to that for the .print line and for the plot command in the interactive mode.

This line generates ASCII plots in batch mode, for compatibility with SPICE2. The overlap of two
or more traces on any plot is indicated by the letter X.

When more than one output variable appears on the same plot, the first variable specified is printed
as well as plotted. If a printout of all variables is desired, then a companion .print line should be
included.

There is no limit on the number of .plot lines specified for each type of analysis.

2.8.4 .four Line

General Form:
.four freq ov1 [ov2 ov3 ...]

Example:
.four 100k v(5)

The .four line controls whether WRspice performs a Fourier analysis as a part of the transient
analysis. The parameter freq is the fundamental frequency, and ov1,..., are the output variables for
which the analysis is desired. The Fourier analysis is performed over the interval [tstop-period, tstop],
where tstop is the final time specified in transient analysis, and period is one period of the fundamental
frequency. The dc component and the first nine harmonics are determined. For maximum accuracy,
tmax (see the .tran line, in 2.7.9) should be set to period/100 (or less for very high Q circuits).

2.8.5 .width Line

General Form:
.width out=wid

This line is ignored, except in batch mode. The wid is the number of columns to be used for printing
output. Internally, this effectively sets the width variable.

2.9 Parameter Measurement

WRspice input files may contain .measure statements. These statements allow certain types of measure-
ments to be performed during a simulation, either at a selected point or over a selected interval. The
syntax is similar to the .measure statement in HSPICE.

2.9.1 .measure Line

General Form:
.measure dc|ac|tran result interval | point [measurements]
.measure dc|ac|tran result param=expression

2.9. PARAMETER MEASUREMENT 55

The dc|ac|tran specifies the analysis type for which the measurement is active. The result is a
token, starting with a letter, which will be used to uniquely identify the results of the measurement. A
vector with this name will be added to the current plot, if the measurement is successful.

The rest of the line can have various formats. The next part of the statement is either an interval
specification, or a single point specification.

There is a second form available, as shown above. In this case, after all interval and point mea-
surements have been performed, the expression will be evaluated and the result saved in result. The
expression can reference other measurement results in addition to the usual vectors and functions pro-
vided by the system. These measurement lines are evaluated in the order found in the input.

In .measure lines, single-quote marks or parentheses can be used to delimit complicated expres-
sions. The usual single-quoted expression expansion performed when input is sourced is not applied to
.measure¿ lines. Instead, internally, the single quotes are replaced by parentheses, preventing expression
expansion but allowing parameter substitution, which is performed at the same time.

Vector names found in .measure lines are added to the internal save list, guaranteeing that the
necessary data will be available when needed, whether or not the vector has been mentioned in a .save

line.

2.9.1.1 Point and Interval Specification

The interval begins with the “trigger” and ends with the “target”. Measurement will apply during this
interval. If no target is given, the trigger sets the “point”, where measurement will be performed. The
trigger and target are independently specified as follows:

form 1:

trig|targ at=value

form 2:

trig|targ variable [val=]value [td=delay] [cross=crosses] [rise=rises] [fall=falls]

form 3:

trig|targ when expr1=expr2 [td=delay] [cross=crosses] [rise=rises] [fall=falls]

Separate specifications for trig/targ are used to specify the boundaries of the measurement interval
in the .measure statement.

Form 1 is straightforward; the interval starts (trig) or ends (targ) at value. Value must be within
the simulation range of the scale variable (e.g., time in transient analysis).

The same effect can be achieved with:

from=value to=value

The from keyword is equivalent to “trig at”, the to keyword is equivalent to “targ at”.

If at appears without trig or targ, it is interpreted as “trig at”.

56 CHAPTER 2. WRSPICE INPUT FORMAT

Form 2 allows the interval boundaries to be referenced to times when a variable crosses a threshold.
The variable can be any vector whose value is available during simulation. The value is a constant
which is used to measure crossing events. The val= which precedes the value is optional. At least one
of the rise/fall/cross fields should be set. Their values are integers which represent the variable
crossing the threshold a number of times. The rise indicates the variable rising through the threshold,
fall indicates the variable decreasing from above to below the threshold, and cross indicates rises +

falls. The interval boundary is set when the specified number of transitions is reached.

If the delay is specified, transition counting starts after the specified delay.

Example:
trig v(2) 2.5 td=0.1ns rise=2

This indicates that the interval begins at the second time v(2) rises above 2.5V after 0.1ns.

The third form is similar to the second form, except that crossings are defined when expr1 = expr2.
These are expressions, which must be enclosed in parentheses if they contain white space or commas. A
rise is defined as expr1 going from less than to greater than expr2.

A point can be specified with a trig or from specification as for an interval. One can also use the
following form:

when expr1=expr2 [td=delay] [cross=crosses] [rise=rises] [fall=falls]

This works exactly as in “trig when”.

2.9.1.2 Measurements

The following measurements are available when an interval has been specified.

min expr
Find the minimum value of expr .

max expr
Find the maximum value of expr .

pp expr
Find the (maximum - minimum) value of expr .

avg expr
Compute the average of expr .

rms expr
Compute the rms value of expr .

pw expr
This will measure the full-width half-maximum of a pulse contained in the interval. The baseline is
taken as the initial or final value with the smallest difference from the peak value. The algorithm
will measure the larger of a negative going or positive going pulse.

rt expr
This will measure the 10-90 percent rise or fall time of the edge contained in the interval. The
reference start and final values are the values at the ends of the interval.

2.9. PARAMETER MEASUREMENT 57

When a point has been specified, the only measurement form available is

find expr
Evaluate expr at point.

A .measure statement can contain any number of measurements, including no measurements. If no
measurement is specified, the vector produced contains only zeros, however the scale vector contains
the start and stop values, which may be the only result needed. The created vector, which is added to
the current plot, will be of length equal to the number of measurements, with the results placed in the
vector in order.

The measurement scale point(s) in .measure statements are also saved in a vector, which is the
scale for the result vector. If the measurement name is “result”, then the scale vector is named
“result scale”. The scale contains one or two values, depending on whether it is a point or interval
measurement.

By default, nothing is printed on-screen for a .measure line during interactive simulation. If the
keyword print appears in the .measure line, the results will be printed on the standard output. A
more concise format can be obtained from the alternative keyword print terse. The result vectors are
created in all cases.

If the keyword stop appears in a .measure line, the analysis will be paused when all measurements
are complete. Thus if the deck contains several .measure lines and stop is given in at least one, the
analysis will pause when all of the measurements are complete, not just the one containing stop. The
analysis can then be resumed with the resume command, or reset with the reset command.

When a .measure is included in an iterative analysis (Monte Carlo, loop, etc.), data are saved as
follows. Before each iteration, the previous result vector and its scale are saved to the end of a “history”
vector and scale, and are then deleted. The result vector and scale are recreated when the measurement
is completed during the iteration. Thus, at the end of the analysis, for a measurement named “example”,
one would have the following vectors:

example the result from the final trial
example scale the measurement interval or point in the last trial
example hist results from the prior trials
example hist scale intervals from the prior trials

Thus, during each trial, the result vector will have the same properties as in a standard run. It can
be used in the .control block of a Monte Carlo or operating range file (recall that $?vector can be used
to query existence, and that if there is no checkPNTS vector defined, the .control block is called once
at the end of each trial).

Multiple .measure lines can be “chained” in the following manner. The vector name following the
from, to, trig, or targ keywords can be the name of another measure. In this case, the effective start
time is the measure time of the referenced measure. The measure time is the end of the interval or
the measure point. The td, rise, and other keywords can be used in the referencing measure. The td

will be added to the imported time, and the other keywords operate in the normal way. If there are no
keywords other than td specified, the time is the delay time plus the imported time.

Example:

.measure tran t1 trig v(5) val=.4m rise=3

.measure tran t2 trig v(5) val=.4m rise=4

.measure tran pw trig t1 td=20p targ t2 td=20p pw v(5) max v(5)

58 CHAPTER 2. WRSPICE INPUT FORMAT

In this case, the measures t1 and t2 “frame” a period of an (assumed) repeating signal v(5). Note
that no actual measurement is performed for these lines. Their purpose is to be referenced in the third
line, which takes as its interval the t1–t2 interval delayed by 20 pS, and measures the pulse width and
peak value.

It is possible to reference .measure results in sources. The referencing token has the same form as a
circuit variable, with an optional index, i.e.

@result[index]

where the index , if used, is an integer that references a specific component of the result (0-based). The
value is always zero for timepoints before the measurement has been performed, and a constant value
afterward.

Example:

.measure tran peak from=50n to=150n max v(5)

.measure tran stuff trig v(4) val=4.5 rise=1 targ v(4) val=4.5 fall=2

+ min v(4) max v(4) pp v(4) avg v(4) rms v(4) print

vxx 1 0 @peak

vyy 2 0 @stuff[2]

In this example, during transient analysis, vxx is zero until 150 nS, where the measurement takes
place, at which point it jumps to the value measured. Likewise, vyy is zero until the measurement, at
which point it jumps to the third component (“pp v(4)”) result. The resulting voltages can be used
elsewhere in the circuit. Note that we have two implementations of a behavioral peak detector.

2.10 Control Script Execution

WRspice includes a script parsing and execution facility, which uses a syntax similar to that of the UNIX
C-shell and will be described in 3.15. Statements which are interpreted and executed by this facility
can be included in circuit files through use of the .exec and .control tokens. These statements are
enclosed in a block beginning with .exec or .control and ending with .endc. The .exec, .control,
and .endc lines contain only the keyword.

2.10.1 .exec, .control, and .endc Lines

General Form:
.exec

shell commands ...
.endc

.control

shell commands ...
.endc

Example:
.exec

2.10. CONTROL SCRIPT EXECUTION 59

set vmin = 2.5

.endc

.control

let maxv = v(2)*v(19)

.endc

The shell commands are any commands which can be interpreted by the WRspice shell. The difference
between .exec and .control is that for .exec, the commands are executed before the circuit is parsed,
and for .control, the commands are executed after the circuit is parsed.

When the circuit is parsed, shell variable substitution is performed. Shell variable references begin
with ‘$’, and are replaced with the text to which the shell variable has been set, unless the character
before the ‘$’ is a backslash (‘\’), which prevents substitution and is usually taken as a comment start.
The variable can be set from the shell with the set command, and a variable is also set if it is given in a
.options line. Any text in a circuit description can reference a shell variable, and this offers a powerful
capability for manipulating the circuit under the control of the shell. As the variables must be set before
the circuit is parsed, the set commands which perform this action can be included in the .exec block
of the circuit file itself, or in the .options line. For example, suppose one has a circuit with a large
number of resistors, each the same value, but it is desired to run the circuit for several different values.
The resistor lines could be specified as

r31 11 36 $rvalue

r32 12 35 $rvalue

etc.

and elsewhere in the file one would have

.exec

set rvalue = 50

.endc

The 50 can be changed to any value, avoiding the need to change the many resistor lines between
simulation runs. Note that the .exec block must be used, if .control was used instead, the variables
would not be set until after the circuit is read, which means that they will not be properly defined when
the expansion is performed. The .control block is useful for initiating analysis and post-processing.

Note that there is an alternative method of parameterization using the .param line.

The same effect could have been obtained from the use of the .options line as

.options rvalue=50

and, as the .options lines are expanded after the .exec lines are executed, one could have the following
contrived example:

.exec

set rtmp=50

.endc

.options rvalue = $rtmp

60 CHAPTER 2. WRSPICE INPUT FORMAT

The shell variables set in .exec and control blocks remain set until explicitly unset, however variables
set in .options lines are active only when the circuit is the current circuit, and cannot be unset (with
the unset command) from the shell. A variable set in the .options line will be superseded by the same
variable set from the shell, .exec or .control lines.

Commands can also be included using a different mechanism, which might be useful if the circuit file
is to be used with other simulators. This mechanism uses comment lines to include shell commands. If
a comment begins with the characters “*@”, the remainder of the line is taken as a shell command just
as if it had been enclosed in .exec and .endc. If a comment line begins with the characters “*#”, the
remainder of the line is treated as if it had been enclosed in .control and .endc. Thus, in the example
above, the .exec block could be replaced with the line

*@ set rvalue = 50

Obviously, this facility allows the possibility that a real comment can be misconstrued as a shell com-
mand. The user is suggested to leave space after the “*” in intended comments, as a general rule.

If a circuit contains an .exec block, a temporary plot structure is created to hold any vectors defined
in the .exec block while the circuit is parsed, after which the plot is deleted. Thus, if the circuit
references vectors defined in the .exec block, the reference will be satisfied, and the variables will have
initial values as defined in the .exec block.

2.10.2 .check, .checkall, .monte, and .noexec Lines

General Form:
.check

.checkall

.monte

.noexec

WRspice provides a built-in two-dimensional operating range analysis as well as Monte Carlo analysis.
A complete description of the file formats used in these analyses is provided in Chapter 5. The analysis
is initiated with the check command described in 4.5.5, or is performed immediately if in batch mode.
Files intended for operating range or Monte Carlo analysis may contain the keywords .check, checkall,
or .monte. In each case, the execution of the .control block is suppressed when the circuit is read,
however the .exec block is executed normally. The .noexec keyword also suppresses execution of the
.control block, but does not predispose the circuit to any particular type of analysis.

The .check line specifies operating range analysis, where the contour of operation is to be determined.
In the two-dimensional space of the variables being varied, the rows are evaluated from the left until a
“pass” condition is found. The analysis then resumes at the far right, working left until a “pass” point
is found. The area between the pass points is never evaluated. If there are islands of fail points within
the pass region, they will not be found with this algorithm. The .checkall line, if used instead, will
evaluate all of the points. This slows evaluation, but is more thorough.

The .monte line specifies Monte Carlo analysis. The .noexec line simply bypasses the execution of
the .control lines when the file is read. It is not an error to have more than one of these lines present
in the file (but this is poor practice). The .monte line has precedence, and .checkall has precedence
over .check. The .noexec is assumed if any of the other lines are given.

2.11. VERILOG INTERFACE 61

2.11 Verilog Interface

WRspice contains a built-in Verilog parser/simulator. Verilog is a popular hardware description language
for digital logic circuits. The integration of Verilog with SPICE provides a wealth of new capability:

• Direct support for analog/digital mixed-mode simulations.

• The ability to create simulation control automation in a Verilog block.

• The ability to create measurement automation in a Verilog block.

• The ability to create pulse sources that have complex output and are independent of the transient
time scale.

2.11.1 .verilog, .endv Lines

General Form:
.verilog

In WRspice, all Verilog code is placed into a block of statements starting with a .verilog line and
ending with a .endv line. The Verilog block defines the modules of a hierarchy, including a top-level
“stimulus” module. The Verilog simulation is run in parallel with transient analysis, where each user
time increment corresponds to one unit of Verilog time. The simulation is performed as if steptype is set
to hitusertp, i.e., simulation is performed at each user time point. The Verilog simulation occurs before
the SPICE iterations at the time point. Signals are passed to the Verilog block with .adc statements,
and signals from the Verilog block are accessed through referencing voltage or current sources.

Output signals from the Verilog block are obtained through voltage or current sources in the circuit.
The voltage/current source must refer by name to a Verilog variable in the scope of the top module,
or use the Verilog “dot” path notation. The voltage/current source is set to the binary value of the
variable, and has a built-in rise/fall time of one time increment. The variable reference can contain a
bit or part select field.

A good primer on Verilog is: Samir Palnitkar, Verilog HDL, A Guide to Digital Design and Synthesis,
SunSoft Press (Prentice Hall) ISBN 0-13-451675-3. The full story is in IEEE Standard 1364-1995.

An example input file that uses a .verilog block is given in A.3.

2.11.2 .adc Line

General Form:
.adc

This line of WRspice input converts a SPICE signal into a digital signal for the Verilog block. Such lines
are used only as an adjunct to Verilog.

General Form:
.adc digital var node name [offset] [delta]

The parameters have the following interpretation:

62 CHAPTER 2. WRSPICE INPUT FORMAT

digital var
A qualified name of a variable in the Verilog block, which can include a range specification.

node name
The node of the circuit to convert, not including any “v()"”. Current branches can be accessed
as “name#branch”.

offset (optional, default 0)
An optional real number subtracted from value before conversion (default 0).

delta (optional, default 1)
The size of an lsb for conversion. This is optional, defaulting to 1.

The transfer function is:

value = value - offset
if (value > 0)

value = value + 0.5*delta

else

value = value - 0.5*delta

conversion = (integer) (value/delta)

The offset and delta arguments to the .adc line can be expressions. These will be evaluated once
only, as the circuit is read in.

2.12 Circuit Elements

Each element in the circuit is specified by an element line that contains the element name, the circuit
nodes to which the element is connected, and the values of the parameters that determine the electrical
characteristics of the element. The first letter of the element name specifies the element type (case
insensitive). For example, a resistor name must begin with the letter ‘R’ or ‘r’ and can contain one or
more characters. Hence, R, r1, Rse, ROUT, and r3ac2zY are valid resistor names.

In the descriptions that follow, data fields that are enclosed in square brackets ‘[’, ‘]’ are optional.
All indicated punctuation (parentheses, equal signs, etc.) is optional and merely indicates the presence
of any delimiter. A consistent style such as that shown here will make the input easier to understand.
With respect to branch voltages and currents, WRspice uniformly uses the associated reference convention
(current flows in the direction of voltage drop).

The circuit cannot contain a loop of voltage sources. If a dc operating point analysis is performed,
which is true for all analysis except for transient analysis with the uic (use initial conditions) flag set, the
circuit can not contain a loop of voltage sources and/or inductors and cannot contain a cutset of current
sources and/or capacitors. In transient analysis with the uic flag set (which is always the case when
Josephson junctions are present), inductor/voltage source loops are allowed, as are capacitor/current
source cut sets. However, parallel voltage sources and series current sources are not accepted. It is not
strictly necessary that each node in the circuit have a dc path to ground with the uic flag given, however

2.12. CIRCUIT ELEMENTS 63

convergence problems may result. It is sometimes necessary to add a large-valued resistor to ground in
these cases. In general, nodes should have at least two connections.

This and the following sections describe the devices available in the standard device library linked
into WRspice. The device library contains the element and model code for each device, as well as the
parser for the element specification lines.

Most of the code for the device library (with the exception of restricted third-party semiconductor
models) is available upon request from Whiteley Research Inc. In theory, users can build their own,
customized device library for use with WRspice. In this case, devices can be added to or deleted from
the library, or modified. Contace Whiteley Research for more information.

This format for most device lines, including the key letters, number of nodes, etc., is standard for the
SPICE input language, but is set entirely by the code in the device library, and hence can be abridged
in a custom device library. The descriptions below pertain to the standard library.

The following is a complete list of circuit elements available in the standard WRspice library, and the
key letter (the first letter of the device name).

Passive Elements
Capacitor c

Inductor l

Mutual Inductor k

Resistor r

Current-Controlled Switch w

Voltage-Controlled Switch s

General Transmission Line t

Lossy Transmission Line o

Uniform RC Line u

Voltage and Current Sources
General Voltage Source v

General Current Source i

Arbitrary Source a

Voltage-Controlled Current Source g

Voltage-Controlled Voltage Source e

Current-Controlled Current Source f

Current-Controlled Voltage Source h

Semiconductor Devices
Junction Diode d

Bipolar Junction Transistor q

Junction Field-Effect Transistor j

MESFET z

MOSFET m

Superconductor Devices
Josephson Junction b

The models for the semiconductor and some other devices require many parameter values. Often,
many devices in a circuit are defined by the same set of device model parameters. For these reasons, a
set of device model parameters is defined on a separate .model line and assigned a unique model name.
The device element lines in WRspice then refer to the model name. This scheme alleviates the need to
specify all of the model parameters on each device element line.

The show command with the -D option is useful for printing a list of the parameters names that can

64 CHAPTER 2. WRSPICE INPUT FORMAT

be used on a device instance line. Only the parameters not listed as “RO” (read-only) can be specified
on the line.

2.13 Device Models

Many devices reference models, which contain values for the numerous parameters describing the device,
which would be cumbersome to include in each device reference. Device models are specified on a .model

line. The model can be referenced by any number of devices of the corresponding type.

General Form:
.model modname type(pname1=pval1 pname2=pval2 ...)

Examples:
.model mod1 npn (bf=50 is=1e-13 vbf=50)

.model intercon ltra (r=0.2 l=9.13nh c=3.65pf len=5 rel=.002 compactrel=1.0E-4)

The .model line specifies a set of model parameters that will be used by one or more devices. The
modname is the model name, which is case insensitive in matching references, and type is one of the
following types:

c Capacitor model
r Resistor model
sw Voltage-controlled switch model
csw Current-controlled switch model
tra General transmission line model
ltra Lossy transmission line model
urc Uniform RC line model
d Diode model
npn NPN BJT model
pnp PNP BJT model
njf N-channel JFET model
pjf P-channel JFET model
nmf N-channel MESFET model
pmf P-channel MESFET model
nmos N-channel MOSFET model
pmos P-channel MOSFET model
jj Josephson junction model

Parameter values are defined by appending the parameter name, as given for each model type,
followed by an equal sign and the parameter value. Model parameters that are not given a value are
generally assigned default values.

The show command with the -M option is useful for listing the parameters that can be specified to
a model. Only the parameters not listed as “RO” (read-only) can appear in a .model line.

In the tables that follow, the various model parameters are listed. The “units” field of the tables
provides the assumed units of measure for the parameter, which is expressed using symbols from the
following table.

2.13. DEVICE MODELS 65

M meters
cM centimeters
µM microns
S seconds
Hz hertz
F farads
H henries
Ω ohms
C degrees Celsius
2 square
A amperes
V volts
eV electron-volts
deg degrees

2.13.1 Analysis at Different Temperatures

All input data for WRspice is assumed to have been measured at a nominal temperature of 25C, which
can be changed by use of the tnom parameter on the .options control line. Note that this is the same
default temperature used in HSPICE, but is not the same as in Berkeley SPICE3 or in WRspice releases
prior to 3.2.15, which was 27C.

This value can further be overridden for any device which models temperature effects by specifying
the tnom parameter on the model itself. The circuit simulation is performed at a temperature of 25C
unless overridden by a temp parameter on the .options control line. Individual device instances may
further override the circuit temperature through the specification of a temp parameter on the instance.

Temperature dependent support is provided for resistors and semiconductor devices. The details of
the temperature adjustments can be found in the description of the models. For details of the BSIM
temperature adjustment, see [5] (BSIM1), [6] (BSIM2), and [8] (BSIM3).

Temperature appears explicitly in the exponential terms of the BJT and diode model equations. In
addition, saturation currents have a built-in temperature dependence. The temperature dependence of
the saturation current in the BJT models is determined by:

Is(T1) = Is(T0)

(

T1

T0

)XTI

exp

(

Egq(T1 − T0)

kT1T0

)

where k is Boltzmann’s constant, q is the electronic charge, Eg is the energy gap which is a model
parameter, and XTI is the saturation current temperature exponent (also a model parameter, and
usually equal to 3).

The temperature dependence of forward and reverse beta is according to the formula:

β(T1) = β(T0)

(

T1

T0

)XTB

where T1 and T0 are in Kelvin, and XTB is a user-supplied model parameter. Temperature effects on
beta are carried out by appropriate adjustment to the values of βF , ISE , βR, and ISC (WRspice model
parameters bf, ise, br, and isc, respectively.

66 CHAPTER 2. WRSPICE INPUT FORMAT

Temperature dependence of the saturation current in the junction diode model is determined by:

IS(T1) = IS(T0)

(

T1

T0

)
XT I

N

exp

(

Egq(T1 − T0)

NkT1T0

)

where N is the emission coefficient, which is a model parameter, and the other symbols have the same
meaning as above. Note that for Schottky barrier diodes, the value of the saturation current temperature
exponent, XTI, is usually 2.

Temperature appears explicitly in the value of junction potential, φ (in WRspice, phi), for all device
models. The temperature dependence is determined by:

φ(T) =
kT

q
ln

(

NaNd

Ni(T)2

)

where k is Boltzmann’s constant, q is the electronic charge, Na is the acceptor impurity density, Nd is
the donor impurity density, and Ni is the intrinsic carrier concentration.

Temperature appears explicitly in the value of surface mobility, µ0 (or u0, for the MOSFET models.
This temperature dependence is determined by:

µ0(T) =
µ0(T0)
(

T
T0

)1.5

The effects of temperature on resistors is modeled by the formula:

R(T) = R(T0)[1 + TC1(T − T0) + TC2(T − T0)
2]

where T is the circuit temperature, T0 is the nominal temperature, and TC1 and TC2 are the first and
second-order temperature coefficients.

2.14 Passive Element Lines

2.14.1 Capacitors

General Form:
cname n+ n- [value | modname] [c=expr] [ic=val] [temp=temp [tc1=tcoeff1] [tc2=tcoeff2]
[l=length] [w=width]

Examples:
cload 2 10 10p

cmod 3 7 cmodel l=10u w=1u

The capicatance value can be specified as a bare number, if it is the first parameter following the
node list. This token can also be a capacitor model name. The paramaters that can follow are:

c=expr
This can also be given as “cap=expr”, or “capacitance=expr”, where expr is an expression yielding

2.14. PASSIVE ELEMENT LINES 67

the capacitance in farads. This is the partial derivative of charge with respect to voltage, possibly
as a function of other circuit variables. This form is applicable when the first token following
the node list is not a capacitance value or model name. It also applies when a model is given, it
overrides the geometric capacitance value.

ic=val
The optional initial condition val is the initial (time zero) voltage across the capacitor. The initial
condition (if any) applies only when the uic option is specified in transient analysis.

temp=temp
The temp is the Celsius operating temperature of the capacitor, for use by the temperature coeffi-
cient parameters.

tc1=tcoeff1
The first-order temperature coefficient. This will override the first-order coefficient found in a
model, if given.

tc2=tcoeff2
The second-order temperature coefficient. This will override the second-order coefficient found in
a model, if given.

l=length
The length of the capacitor. This applies only when a model is given, which will compute the
capacitance from geometry.

w=width
The width of the capacitor. This applies only when a model is given, which will compute the
capacitance from geometry.

The n+ and n- are the positive and negative element nodes, respectively, and value is the capacitance
for a constant valued capacitor. Alternatively, a capacitor model modname can be specified which
allows for the calculation of the actual capacitance value from strictly geometric information and the
specifications of the process. If value is specified, it defines the capacitance. If modname is specified,
then the capacitance is calculated from the process information in the model modname and the given
length and width. If value is not specified, then modname and length must be specified. If width is not
specified, then it will be taken from the default width given in the model. Either value or modname,
length, and width may be specified, but not both sets.

2.14.2 Capacitor Model

Type Name: c

The capacitor model contains process information that may be used to compute the capacitance from
strictly geometric information.

68 CHAPTER 2. WRSPICE INPUT FORMAT

Capacitor Model Parameters
name parameter units default example

cj junction bottom capacitance F/M2 - 5e-5
cjsw junction sidewall capacitance F/M - 2e-11
defw default device width M 1e-6 2e-6
narrow narrowing due to side etching M 0.0 1e-7
tnom parameter measurement temperature C 25 50
tc1 first order temperature coeff˙ Ω/C 0.0 -
tc2 second order temperature coeff˙ Ω/C2 0.0 -

The capacitor has a nominal capacitance computed as below, where l and w are parameters from the
device line.

C = cj·(l−narrow)(w−narrow) + 2cjsw·(l+w−2·narrow)

After the nominal capacitance is calculated, it is adjusted for temperature by the formula:

C(temp) = C(tnom)·(1 + tc1·(temp−tnom) + tc2·(temp−tnom)2)

2.14.3 Inductors

General Form:
lname n+ n- value [ic=val]

Examples:
llink 42 69 1uh

lshunt 23 51 10u ic=15.7ma

The n+ and n- are the positive and negative element nodes, respectively, and value is the inductance
in henries. The optional initial condition is the initial (time-zero) value of inductor current (in amps)
that flows from n+, through the inductor, to n-. The initial conditions (if any) apply only when the uic
option is specified in transient analysis.

2.14.4 Coupled (Mutual) Inductors

General Form:
kname inductor1 inductor2 value

Examples:
k43 laa lbb 0.999

kxfrmr l1 l2 0.87

The inductor1 and inductor1 are the names of the two coupled inductors found elsewhere in the
circuit, and value is the coefficient of coupling, K, which must be greater than 0 and less than or equal
to 1. Using the “dot” convention, one would have a dot on the first node of each inductor.

2.14. PASSIVE ELEMENT LINES 69

2.14.5 Resistors

General Form:
rname n1 n2 [value | modname] [r=expr] [temp=temp [tc1=tcoeff1] [tc2=tcoeff2] [l=length]
[w=width]

Examples:
rload 2 10 10k

rmod 3 7 rmodel l=10u w=1u

The nominal-temperature resistance value can be specified as a bare number, if it is the first parameter
following the node list. This token can also be a resistor model name. The paramaters that can follow
are:

r=expr
This can also be given as “res=expr” or “resistance=expr”, where expr is an expression giving the
nominal-temperature device voltage divided by device current (“large signal” resistance) in ohms,
possibly as a function of other variables. This form is applicable when the first token following
the node list is not a resistance value or model name. It also applies when a model is given, it
overrides the geometric resistance value.

temp=temp
The temp is the Celsius operating temperature of the resistor, for use by the temperature coefficient
parameters.

tc1=tcoeff1
The first-order temperature coefficient. This will override the first-order coefficient found in a
model, if given. The keyword “tc” is an alias for “tc1”.

tc2=tcoeff2
The second-order temperature coefficient. This will override the second-order coefficient found in
a model, if given.

l=length
The length of the resistor. This applies only when a model is given, which will compute the
resistance from geometry.

w=width
The width of the resistor. This applies only when a model is given, which will compute the
resistance from geometry.

The n1 and n2 are the two element nodes, and value is the resistance, for a constant value resistor. A
resistor model modname can alternatively be specified and allows the calculation of the actual resistance
value from strictly geometric information and the specifications of the process. If value is specified
after modname, it overrides the geometric information (if any) and defines the nominal-temperature
resistance. If modname is specified, then the resistance may be calculated from the process information
in the model modname and the given length and width. In any case, the resulting value will be adjusted
for the operating temperature temp if that is specified, using correction factors given. If value is not
specified, then modname and length must be specified. If width is not specified, then it will be taken
from the default width given in the model.

If the resistance can not be determined from the provided parameters, a fatal error results. This
behavior is different from traditional Berkeley SPICE, which provides a default value of 1K.

70 CHAPTER 2. WRSPICE INPUT FORMAT

2.14.6 Resistor Model

Type Name: r

The resistor model consists of process-related device data that allow the resistance to be calculated
from geometric information and to be corrected for temperature. The parameters (multiple names are
aliases) available are:

Resistor Model Parameters
name parameter units default example

tc1, tc, tc1r first order temperature coeff˙ Ω/C 0.0 -
tc2, tc2r second order temperature coeff˙ Ω/C2 0.0 -
rsh sheet resistance Ω/2 - 50
defl, l default length M 0 2e-6
defw, w default width M 0 2e-6
dl, dlr length reduction due to etching M 0 1e-7
narrow, dw narrowing due to side etching M 0 1e-7
tnom, tref parameter measurement temperature C 25 50
temp default instance temperature C 25 50
kf flicker noise coefficient 0
af flicker noise exponent of current 2
ef flicker noise exponent of frequency 1
wf flicker noise exponent of width 1
lf flicker noise exponent of length 1

The sheet resistance is used with the etch reduction parameters and l and w from the resistor element
line to determine the nominal resistance by the formula

R = rsh·(l - dl)/(w - narrow).

The parameters defw and defl are used to supply default values for element w and l if not specified
on the device line. A fatal error is produced if the resistance can’t be determined from given parameters.

After the nominal resistance is calculated, it is adjusted for temperature by the formula:

R(temp) = R(tnom)·(1 + tc1·(temp−tnom) + tc2·(temp−tnom)2)

The flicker noise capability can be used in noise analysis. This requires that kf, l, and w be specified.
To use, the instance line must reference a model, but also can have a resistance specified which will
override model calculation of resistance.

Flicker noise model:

Noise = (KF · IAF)/(LeffLF · WeffW F · fEF)

2.14. PASSIVE ELEMENT LINES 71

Param Description Units
Noise Noise spectrum density A2Hz
I Current A
Leff Eff length (L-DL) M
Weff Eff width (W-DW) M
f Frequency Hz
Param Description Default, Range
KF Flicker noise coefficient 0, >= 0
AF Exponent of current 2, > 0
LF Exp. of eff. length 1, > 0
WF Exp. of eff. width 1, > 0
EF Exp. of frequency 1, > 0

2.14.7 Switches

General Form:
sname n+ n- nc+ nc- model [on | off]

wname n+ n- vnam model [on | off]

Examples:
s1 1 2 3 4 switch1 on

s2 5 6 3 0 sm2 off

switch1 1 2 10 0 smodel1

w1 1 2 vclock switchmod1

w2 3 0 vramp sm1 on

wreset 5 6 vclck lossyswitch off

Nodes n+ and n- are the nodes between which the switch terminals are connected. The model name
is mandatory while the initial conditions are optional. For the voltage controlled switch, nodes nc+
and nc- are the positive and negative controlling nodes respectively. For the current controlled switch,
the controlling current is that through the voltage source or inductor vnam. The direction of positive
controlling current flow is from the positive node, through the source or inductor, to the negative node.

2.14.8 Switch Model

Type Names: csw, sw

The switch model allows an almost ideal switch to be described in WRspice. The switch is not quite
ideal, in that the resistance can not change from 0 to infinity, but must always have a finite positive
resistance. By proper selection of the on and off resistances, they can be effectively zero and infinity in
comparison to other circuit elements. There are two different types of switch devices; current-controlled
(keyed by w), and voltage-controlled (keyed by s). Both reference the model described below. The
parameters available are:

72 CHAPTER 2. WRSPICE INPUT FORMAT

Switch Model Parameters
name parameter units default switch

vt threshold voltage V 0.0 S
it threshold current A 0.0 W
vh hysteresis voltage V 0.0 S
ih hysteresis current A 0.0 W
ron on resistance Ω 1.0 both
roff off resistance Ω 1/gmin* both

* The gmin parameter, can be set on the .options line. Its default value results is an off resistance of
1.0e+12 ohms.

The use of an ideal element that is highly nonlinear such as a switch can cause large discontinuities to
occur in the circuit node voltages. A rapid change such as that associated with a switch changing state
can cause numerical roundoff or tolerance problems leading to erroneous results or timestep difficulties.
The user of switches can improve the situation by taking the following steps.

First of all it is wise to set ideal switch impedances only high and low enough to be negligible with
respect to other circuit elements. Using switch impedances that are close to “ideal” in all cases will
aggravate the problem of discontinuities mentioned above. Of course, when modeling real devices such
as MOSFETS, the on resistance should be adjusted to a realistic level depending on the size of the device
being modeled.

If a wide range of on to off resistance must be used in the switches (roff/ron > 1e12), then the
tolerance on errors allowed during transient analysis should be decreased by using the .options line
and specifying trtol to be less than the default value of 7.0 (options can also be set from the prompt
line from within WRspice). When switches are placed around capacitors, then the option chgtol should
also be reduced. Suggested values for these two options are 1.0 and 1e-16 respectively. These changes
inform WRspice to be more careful around the switch points so that no errors are made due to the rapid
change in the circuit.

2.14.9 Transmission Lines (General)

General Form:
tname n1 n2 n3 n4 [model] [param=value ...]

oname n1 n2 n3 n4 [model] [param=value ...]

Examples:
t1 1 0 2 0 z0=50 td=10ns

tw 1 0 2 0 z0=50 f=1ghz nl=.1

tx 1 0 4 0 l=9.13e-9 c=3.65e-12 len=24

ty 2 0 4 0 l=100pH c=5pf r=1.5 len=12

tz 2 0 4 0 tranmod len=12

In WRspice, the transmission line element represents a general lossy or lossless transmission line.
The simple case of the lossless line of SPICE2/3 is handled in WRspice by this device. The lossy
line (LTRA) device of SPICE3 is also handled by this element in WRspice. Additional parameters
represent an extension of the SPICE2/3 element to the lossy case. The WRspice transmission line is a
logical combination of the SPICE3 lossless transmission line, the SPICE3 lossy (LTRA) transmission
line approach of Roychowdhury and Pederson [13], and the Pade approximation lossy line approach of
Lin and Kuh [14].

2.14. PASSIVE ELEMENT LINES 73

Above, n1 and n2 are the nodes at port 1, n3 and n4 are the nodes at port 2. Note that this element
models only one propagating mode. If all four nodes are distinct in the actual circuit, then two modes
may be excited. To simulate such a situation, two transmission line elements are required.

There is a fairly lengthly list of parameters which can be applied in the device line, or in a model. If
a model is referenced in the element line, the element defaults to the parameters specified in the model,
though any of these parameters can be overridden for the element if given new values in the element
line.

2.14.9.1 Model Level

level

This parameter can take values 1 (the default if not given) or 2. The level indicates the treatement
of a lossy element, and has no effect if the transmission line is lossless.

Level 1 handles arbitrary RLCG configurations using the Pade approximation approach. A Pade
approximation is used as a rational function approximation to the transfer function in the Laplace
domain, which has a trivial inverse transformation to the time domain. Further, separability avoids
the need to perform a complex convolution at each time point. The model is very fast and accurate
enough for most purposes.

Level 2 handles RLC configurations using a full numerical convolution, equivalent to the LTRA
model. It does not allow a G element, and is much slower than the Pade approximation approach,
however it may be more accurate. Level 2 supports the following types of lines: RLC (uniform
transmission line with series loss only), RC (uniform RC line), LC (lossless transmission line), and
RG (distributed series resistance and parallel conductance only).

2.14.9.2 Electrical Characteristics

len

This provides the physical length of the transmission line in arbitrary units, though the units must
match the per-length unit in the element values discussed below. If not given, the value is taken
as unity, unless it is implicitly defined by other parameters.

l

This parameter provides the series inductance per unit length of the line. The default is 0.

c

This parameter provides the shunt capacitance per unit length of the line. The default is 0.

r

This parameter provides the series resistance per unit length of the line. The default is 0.

g

This parameter provides the shunt conductance per unit length of the line. The default is 0. With
level 2, this cannot be nonzero if l or c is given, i.e., only r can be nonzero if g is nonzero for level
= 2, as in the SPICE3 LTRA model.

z0 or zo
This is the line (lossless) characteristic impedance in ohms, given by

Z0 =
√

L/C

74 CHAPTER 2. WRSPICE INPUT FORMAT

td or delay
This is the (lossless) phase delay of the line in seconds, given by

Td = Length
√

LC

nl

This is the normalized line length at a particular frequency f, which must also be specified (see
below). This is an alternative means for setting the line delay, where

Td = nl/f

It is an error to give both td and nl.

f

This is the frequency at which the normalized line length (above) is representative.

To model a line with nonzero series inductance and shunt capacitance, a complete but non-conflicting
subset of the parameters l, c, z0, td, len, f, and nl must be provided. The td parameter is the line
delay in seconds, and the z0 parameter is the impedance in ohms, for the lossless case. Specifying
these two parameters is sufficient to completely specify a lossless line, or the reactive elements of a lossy
line. Alternatively, one could specify l (inductance per length), c (capacitance per length) and len (line
length). If len is not specified in either case, the length defaults to unity. The delay can also be specified
through the f (frequency) and nl (normalized length) parameters, where the delay would be set to nl/f.
It is an error to specify both td and f, nl. If td is specified, or both f and nl are specified, along with
parameters which yield internally the L and C values, then the length is determined internally by

Length = Td/
√

LC

One can specify z0 and l, for example, which determines C. Unlike the SPICE3 (and SPICE2) lossless
line devices, the delay must be specified through the parameters; there is no default.

2.14.9.3 Initial Conditions

v1, i1, v2, i2
The (optional) initial condition specification consists of the voltage and current at each of the
transmission line ports. The initial conditions (if any) apply only when the uic option is specified
in transient analysis.

2.14.9.4 Timestep and Breakpoint Control

Internally, the transmission line models store a table of past values of the currents and voltages at the
terminals, which become excitations after the delay time. As excitations, these signals can cause errors
or nonconvergence if their rate of change is too large. These errors are reduced or eliminated by two
mechanisms: time step truncation and breakpoint setting. Time step truncation occurs if the excitation
derivative exceeds a certain threshold. A breakpoint which occurs at this time will also be rescheduled
to one delay-time later. Breakpoints are set by the independent voltage and current sources at times
where a slope change occurs, in piecewise linear outputs. At a breakpoint, the internal time step is cut
and integration order reduced to accommodate the change in input accurately.

2.14. PASSIVE ELEMENT LINES 75

truncdontcut

If this flag is given, no complicated timestep cutting will be done. In the level=1 (Pade) case for
a lossy line, there is an initial timestep limiting employed in all cases, to slopetol·tau, where tau is
an internal time constant of the model. This limiting is usually sufficient, and provides the fastest
simulation, and therefor truncdontcut is the default in this case.

truncsl

If this flag is given, the device will use a slope-test timestep cutting algorithm. This is the default
in the lossless case, for any level.

slopetol

When using the slope-test timestep cutting algorithm, this is the fraction used in the slope test.
The default is 0.1. This parameter is also used in the level=1 pre-cutting for lossy lines, described
above.

trunclte

This applies to level=2 (full convolution) only. When this flag is given, a local truncation error
method is used for timestep control. This is the default for lossy lines with level=2.

truncnr

This applies to level=2 only. When this flag is given, a Newton-Raphson iterative method is used
for timestep control.

If no timestep control keywords are given, the defaults are the following:

Lossless case, any level truncsl

Level=1 (Pade) truncdontcut

Level=2 (convolution) trunclte

Only one of the trunc flags should be given. The latter two apply only to a lossy line with level=2,
and if given in a different case the default timestep control is applied.

The slope algorithm computes the difference between the quadratic extrapolation from the last three
and the linear extrapolation from the last two time points, and uses this difference formula to determine
the time when this error is equal to slopetol multiplied by the the maximum absolute value of the
signal at the three time points.

When using level=2, there are two alternative timestep control options. If the trunclte flag is
given, the timestep is reduced by one half if the computed local truncation error is larger than an error
tolerance, which is given by

tol = trtol · (reltol · (abs(input1) + abs(input2)) + abstol

where trtol, reltol and abstol are the values of the SPICE options trtol, reltol and abstol, and input1
and input2 are the internally stored excitations. If the truncnr flag is given, a timestep is computed
based on limiting the local truncation error to the tolerance given above.

The handling of breakpoints is controlled by the following flags:

nobreaks

When this flag is given, there will be no breakpoint rescheduling.

allbreaks

When this flag is give, all breakpoints are rescheduled.

76 CHAPTER 2. WRSPICE INPUT FORMAT

testbreaks

When this flag is given, which is the default, a test is applied and only breakpoints that pass this
test are rescheduled.

rel

When testing breakpoints, this is the relative tolerance value. The default is .001.

abs

When testing breakpoints, this is the absolute tolerance value. The default is 1e-12.

The breakpoint setting is controlled by the three flags nobreaks, allbreaks, and testbreaks.
Only one should be given, and the default is testbreaks. If nobreaks is set, breakpoints will not be
rescheduled. If allbreaks is set, all breakpoints will be rescheduled to the break time plus the delay
time. The default testbreaks will reschedule a breakpoint if a slope test is passed. This slope test
makes use of the rel and abs parameters. The slopes at the last two time points are computed. The
breakpoint is rescheduled if

abs(d1 − d2) > max(.01·rel·vmax, abs)/dt

where d1 and d2 are the two slopes. The parameters rel and abs default to 1e-3 and 1e-12, respectively.
The dt parameter is the sum of the last two time deltas, and vmax is a running peak detect function
representing the maximum voltage applied to the line. Note that these are different defaults (and
a different algorithm) from the parameters of the same name used in the SPICE3 transmission line
models.

In most cases, the defaults for the timestep and breakpoint controls are sufficient. Excessive setting of
breakpoints and timestep truncation increases execution time, while insufficient control can produce er-
rors. An alternative approach is to limit the maximum internal timestep used with the .tran line, which
can provide highly accurate results for comparison when experimenting with the control parameters.

See the description of the transmission line model (2.14.10) for more information.

2.14.9.5 History List

lininterp

If this flag is set, linear interpolation is used to obtain the present value of signals in the history
list.

quadinterp

If this flag is set, which is the default, quadratic interpolation is used to obtain the present value
of signals in the history list.

compactrel

This is the relative tolerance used in history list compaction for level=2. The default value is the
same as the WRspice default relative tolerance (reltol variable).

compactabs

This is the absolute tolerance used in history list compaction for level=2. The default value is
the same as the WRspice default absolute tolerance (abstol variable).

The flag lininterp, when specified, will use linear interpolation instead of the default quadratic
interpolation for calculating delayed signals.

2.14. PASSIVE ELEMENT LINES 77

The parameters compactrel and compactabs control the compaction of the past history of values
stored for convolution when using level=2. Larger values of these lower accuracy but usually increase
simulation speed. These are to be used with the trytocompact option, described in the .options

section.

2.14.10 Transmission Line Model

Type Names: ltra, tra

The general transmission line model may be used in conjunction with transmission line devices,
though the use is optional. The parameters that appear in the model are the same parameters that can
be given on the device line (with the exception of the initial conditions). These parameters are discussed
in section 2.14.9 describing the general transmission line.

Transmission line models can have either of two type names: tra or ltra. The ltra name is required
to support the SPICE3 LTRA lossy transmission line model. If this name is used, the level will default
to 2. This will be overridden if the level is set explicitly. If the tra keyword is used, then the level will
default to 1. Otherwise, the two words are interchangeable.

The parameters provided in the model will serve as defaults to the referencing device, but can be
overridden if explicitly set on the device line.

2.14.11 Uniform RC Line

General Form:
uname n1 n2 n3 modname l=len [n=lumps]

Examples:
u1 1 2 0 urcmod l=50u

urc2 1 12 2 umodl l=1mil n=6

The n1 and n2 are the two element nodes the RC line connects, while n3 is the node to which the
capacitances are connected. The modname is the model name, len is the length of the RC line in meters,
and lumps, if specified, is the number of lumped segments to use in modeling the RC line. If not specified,
the value will be computed as

N =
log
(

2πFmaxRC · ((k − 1)/k)
2
)

log(k)

where N is the number of lumps, k is the proportionality factor, R and C are the total values for the
length, and Fmax is the maximum frequency.

2.14.12 Uniform Distributed RC Model

Type Name: urc

The urc model is derived from a model proposed by L. Gertzberrg in 1974. The model is generated
by a subcircuit type expansion of the urc line into a network of lumped RC segments with internally
generated nodes. The RC segments are in a geometric progression, increasing toward the middle of the

78 CHAPTER 2. WRSPICE INPUT FORMAT

urc line, with k as a proportionality constant. The number of lumped segments used, if not specified on
the urc line, is determined by the following formula:

N =
log
(

2πFmaxRC ((k − 1)/k)
2
)

log(k)

where Fmax is the maximum frequency, and R and C are the total values for the given length.

The urc will be made up strictly of resistor and capacitor segments unless the isperl parameter is
given a non-zero value, in which case the capacitors are replaced with reverse biased diodes with a zero-
bias junction capacitance equivalent to the capacitance replaced, and with a saturation current taking
the value given isperl in amps per meter of transmission line, and with an optional series resistance
specified by rsperl in ohms per meter.

URC Model Parameters
name parameter units default example

k propagation Constant - 1.5 1.2
fmax maximum frequency of interest Hz 1.0G 6.5meg
rperl resistance per unit length Ω/M 1000 10
cperl capacitance per unit length F/M 1.0e-12 2pf
isperl saturation current per unit length A/M 0 -
rsperl diode resistance per unit length Ω/M 0 -

2.15 Voltage and Current Sources

General Form:
vname n+ n- [expr] [[dc] dcvalue] [ac [acmag [acphase]] | table(name)]

[distof1 [f1mag [f1phase]]] [distof2 [f2mag [f2phase]]]
iname n+ n- [expr] [[dc] dcvalue] [ac [acmag [acphase]] | table(name)]

[distof1 [f1mag [f1phase]]] [distof2 [f2mag [f2phase]]]
aname n+ n- V|I = expr [[dc] dcvalue] [ac [acmag [acphase]] | table(name)]

[distof1 [f1mag [f1phase]]] [distof2 [f2mag [f2phase]]]

Examples:
vcc 10 0 dc 6

vin 13 2 0.001 ac 1 sin(0 1 1meg)

v2 10 1 ac table(acvals)

isrc 23 21 ac 0.333 45.0 2*sffm(0 1 10k 5 1k)

vmeas 12 9

vin 1 0 2*v(2)+v(3)

azz 2 0 v=.5*exp(v(2))

ixx 2 4 pulse(0 1 1n 10n 10n) + pulse(0 1 40n 10n 10n)

In WRspice, the specification of an “independent” source is completely general, as the output can
be governed by an arbitrary expression containing functions of other circuit variables. The syntax is a
superset of the notation used in previous versions of SPICE, which separately keyed independent and
dependent sources.

2.15. VOLTAGE AND CURRENT SOURCES 79

The leading letter “v” keys a voltage source, and “i” keys a current source. In addition, the “arbitrary
source” used in SPICE3 is retained, but is keyed by “a”, rather than “b” (“b” is used for Josephson
junctions in WRspice). This is a special case of the general source specification included for backward
compatibility.

The n+ and n- are the positive and negative nodes, respectively. Note that voltage sources need
not be grounded. Positive current is assumed to flow from the positive node, through the source, to the
negative node. A current source of positive value will force current to flow in to the n+ node, through
the source, and out of the n- node. Voltage sources, in addition to being used for circuit excitation,
are often used as “ammeters” in WRspice, that is, zero valued voltage sources may be inserted into the
circuit for the purpose of measuring current (in WRspice, an inductor can be used for this purpose as
well). Zero-valued voltage sources will, of course, have no effect on circuit operation since they represent
short-circuits, however they add complexity which might slightly affect simulation speed.

In transient and dc analysis, sources can in general have complex definitions which involve the
dependent variable (e.g., time in transient analysis) and other circuit variables. There are built-in
functions (pulse, pwl, etc.) which can be included in the expr.

Constant values associated with the source are specified by the following option keywords:

dc dcvalue
This specifies a fixed dc analysis value for the source, and enables the source to be used in a dc
sweep if the expr is given. If the expr is not given, the source is available for use in a dc sweep
whether or not the dc keyword is given. If an expr is present without “dc dcvalue”, the time=0
value of the expr is used for dc analysis. If the source value is zero for both dc and transient
analyses, this value and the expr may be omitted. If the source is the same constant value in dc
and transient analysis, the keyword “dc” and the value can be omitted.

ac [[acmag [acphase]] | table(name)]
The parameter acmag is the ac magnitude and acphase is the ac phase. The source is set to this
value in ac analysis. If acmag is omitted following the keyword ac, a value of unity is assumed. If
acphase is omitted, a value of zero is assumed. If the source is not an ac small-signal input, the
keyword ac and the ac values are omitted. Alternatively, a table can be specified, which contains
complex values at different frequency points. In ac analysis the source value will be derived from
the table. The table with the given name should be specified in a .table line, with the ac keyword
present. The values in the table are the real and imaginary components, and not magnitude and
phase.

distof1 and distof2

These are the keywords that specify that the independent source has distortion inputs at the
frequencies f1 and f2 respectively for distortion analysis. The keywords may be followed by an
optional magnitude and phase. The default values of the magnitude and phase are 1.0 and 0.0
respectively.

The expr is used to assign a time-dependent value for transient analysis and to supply a functional
dependence for dc analysis. If a source is assigned a time-dependent value, the time-zero value is used
for dc analysis, unless a dc value is also provided.

2.15.1 Device Expressions

WRspice contains a separate expression handling system for expressions found in device lines. Voltage
and current source lines may contain expressions, as can resistor and capacitor device lines. These

80 CHAPTER 2. WRSPICE INPUT FORMAT

use the same syntax as is used in vector expressions in WRspice shell commands (see 3.16.6), and in
single-quoted expressions.

Although the syntax and most of the function names are equivalent to vector expressions used in
post-processing, the mathematics subsystems are completely different. There are three main differences
from ordinary vector expressions:

1. The expressions always resolve as scalars. Before evaluation, all vectors in the current plot are
“scalarized” so that they temporarily have unit length with the current value as the data item.

2. All inputs and results are real values.

3. All expressions must be differentiable with respect to node voltages and branch current variables.
This has subtle but important consequences as explained below.

The expression can contain vectors from the current plot or the constants plot, and circuit param-
eters accessed through the @device[param] construct. In addition, the variable “x”, which can appear
explicitly in the expression, is defined to be the controlling variable in dependent sources, or is set to
the scale variable in the analysis (e.g., time for transient analysis).

The functions which are used in the device description must be differentiable with respect to node
voltages and branch currents. Internally, the expressions are symbolically differentiated in order to
calculate the Jacobian, which is used to set up the matrix which is solved during analysis. This prevents
use of the logical operators, modulus operator, relational operators (<, >, etc.), and the tri-conditional
operator (a ? b : c) in these expressions where an operand depends on a node voltage or branch current.

In addition to the built-in functions, expressions used in devices can include user-defined functions,
which must have been defined previously with the define command, or with a .param line, or in a
parameter definition list in a subcircuit call or definition. These can be used with either math package.
Internally, they are saved in a data structure known as a parse tree. When a user-defined function is
called in the context of a device equation, checking is performed on the user-defined function parse tree
to see if any of the non-differentiable operations are included. If so, an error, such as

invalid operator number 16 ("LT") in input

is generated, and the equation setup fails.

This being said, the situation is actually a bit more complicated. As the circuit is being set up, all
device equations, after linking in the user-defined functions if any, are “simplified” by evaluating and
collapsing all of the constant terms as far as possible. This evaluation allows all of the operations. In
general, these equations can be very complex, with lots of parameters and conditional tests involving
parameters. However, after simplification, the equation typically reduces to a much simpler form, and
the conditionals and other unsupported constructs will have disappeared.

The bottom line of all of this is that for equations that appear in a device description, the circuit
variables (node voltages and branch currents) can’t be used in tri-conditional, logical, or relational
sub-expressions. For example consider the following:

.param myabs(a) = ’a < 0 ? -a : a’

.param mymax(x,y) = ’x > y ? x : y’

E2 2 0 function myabs(v(1))

E3 3 0 function mymax(v(1), 0)

2.15. VOLTAGE AND CURRENT SOURCES 81

This will not work, as it specifically breaks the rules prohibiting relational operators and tri-conditionals.
However, it really should be possible to simulate a circuit with behavior described as intended above,
and it (usually) is. One needs to find ways of expressing the behavior by using supported math.

For example, either of these alternatives would be an acceptable alternative for myabs.

.param myabs(a) = abs(a)

.param myabs(a) = sqrt(a*a)

For the special case of y = 0, an acceptable substitute for mymax would be

.param mymax(x,y) = 0.5*(abs(x) + x)

Thus, the following lines are equivalent to the original description, but will be accepted as WRspice

input.

.param myabs(a) = abs(a)

.param mymax(x,y) = 0.5*(abs(x) + x)

E2 2 0 function myabs(v(1))

E3 3 0 function mymax(v(1), 0)

Someday, it may be possible to add internal intelligence to WRspice to perform this type of substi-
tution automatically.

Although the lists of math functions available in the two packages are similar, the internal evaluation
routines are different. The shell math functions must operate on vectors of complex values, whereas the
functions called in device expressions take scalar real values only. Furthermore, the device expressions
must be differentiable with respect to included node voltages and branch currents, as the derivative of
the expression is computed as part of the iterative process of solving the circuit matrix equations. We
have seen that this limits the operations available, and it likewise puts restrictions on the functions. The
sgn function grossly violates the differentiability requirement, and many of the functions and/or their
derivatives have restricted ranges or singularities. These can easily lead to convergence problems unless
some care is exercised.

As for all expressions, if an expression is enclosed in single quotes, it will be evaluated when the file
is read, reducing to a constant. However, if the expression contains references to circuit variables such as
node voltages or branch currents, it will be left as an expression, to be evaluated during the simulation.

The following math functions are available in device expressions on most systems:

82 CHAPTER 2. WRSPICE INPUT FORMAT

abs absolute value
acos arc cosine
acosh arc hyperbolic cosine
asin arc sine
asinh arc hyperbolic sine
atan arc tangent
atanh arc hyperbolic tangent
cbrt cube root
cos cosine
cosh hyperbolic cosine
deriv derivative
erf error function
erfc error function complement
exp exponential (e raised to power)
j0 Bessel order 0
j1 Bessel order 1
jn Bessel order n
ln natural log
log natural log
log10 log base 10
pow x to power y
pwr x to power y
sgn sign (+1,0,-1)
sin sine
sinh hyperbolic sine
sqrt square root
tan tangent
tanh hyperbolic tangent
y0 Neumann order 0
y1 Neumann order 1
yn Neumann order n

Most functions take a single argument. Exceptions are jn and yn, which require two arguments.
The first argument is an integer value for the order, and the second argument is the function input.
The pow and functionally identical pwr functions also require two arguments, the first argument being
the base, and the second being the exponent. The deriv function will differentiate the parse tree of
the argument with respect to the “x” variable (whether implicit or explicit). This is completely unlike
the deriv function for vectors, which performs a numerical differentiation with respect to some scale.
Differentiating the parse tree gives an analytic result which is generally more accurate.

In addition, there are special “tran functions” (see 2.15.3) which produce specified output in transient
analysis. WRspice recognizes by context functions and tran functions with the same name (exp, sin,
gauss). An unrecognized function is assumed to be a table reference (specified with a .table line).

After simplification by collapsing all of the constant terms, the following tokens are recognized in a
device function.

2.15. VOLTAGE AND CURRENT SOURCES 83

+,*,/ binary: add, multiply, divide
- unary or binary: negate or subtract
^ binary: exponentiation
() association
, argument separator
x independent variable
number a floating point number
string a library function, table, or circuit vector

The independent variable x is context specific, and usually represents a global input variable. It
is the running variable in the current analysis (time in transient analysis, for example), or the input
variable in dependent source specifications (see 2.15.4).

In a chained analysis, the x variable will be that of core analysis. Thus, for a chained transient
analysis, x is time, as in the unchained case. Since the functional dependence is inoperable in any kind
of ac small-signal analysis (ac, noise, transfer function, pz, distortion, ac sensitivity) x is not set and
never used. In “op” analysis, x is always numerically zero. The same is true in dc sensitivity analysis.

During a “pure” dc sweep analysis, for “independent” sources (keyed by v, i, or a and not e, f, g,
or h) other than the swept ones, if an expression is given, the output of the source will be the result of
the expression where the input x is the swept voltage (or the first sweep voltage if there are two), rather
than time as when in transient anslysis. However, if the source line has a “dc” keyword and optional
following constant value, during pure dc analysis the source will output the fixed value, or zero, if the
value is omitted. However, in pure dc analysis the tran functions generally return zero. The exceptions
are pwl, table and table references, and interp. These functions return values, but with the swept
voltage (x) as the input (in the case of table the input may be explicit anyway). For “dependent”
sources (keyed by e, f, g, or h) the x is the controlling voltage or current as in transient analysis. Again,
if a “dc” keyword appears, the output will be fixed at the given value, ignoring the controlling variable.

Since circuit “vector” names used in device expressions must be resolved before the actual vector
is created, there is a potential for error not present in normal vector expressions. In particular, name
clashes between circuit node names and vectors in the constants plot can cause trouble.

In a device expressions, if a string token starts with a backslash (’\’) character, it will not be
replaced with a value, should the name happen to match one of the named constants, or other potential
substitution. This will be needed, for example, if a node name matches one of the predefined constant
names, and one needs to reference that node in a source expression. The token should be double quoted
to ensure this interpretation by the parser.

For example, suppose there is a node named “c”, which is also the name of a vector in the constants
plot. Such a vector existed in earlier WRspice releases, as it was the speed of light constant. This constant
is now named “const c” so a clash with this is unlikely. However, the user can create a vector named
“c” in the constants plot, so the possibility of a clash remains.

A source specification like

vcon 1 2 5*v(c)

will cause an error, possibly not until simulation time. This can be avoided by use of the form described
above.

vcon 1 2 5*v("\c")

84 CHAPTER 2. WRSPICE INPUT FORMAT

2.15.2 POLY Expressions

In SPICE2, nonlinear polynomial dependencies are specified using a rather cumbersome syntax keyed
by the word poly. For compatibility, this syntax is recognized by the dependent sources in WRspice,
making possible the use of the large number of behavioral models developed for SPICE2.

There are three polynomial equations which can be specified through the poly(N) parameter.

poly(1) One-dimensional equation

poly(2) Two-dimensional equation

poly(3) Three-dimensional equation

The dimensionality refers to the number of controlling variables; one, two, or three. These parameters
must immediately follow the poly(N) token. The inputs must correspond to the type of the source,
either pairs of nodes for voltage-controlled sources, or voltage source or inductor names for current-
controlled sources. Following the inputs is the list of polynomial coefficients which define the equation.
These are constants, and may be in any format recognized by WRspice.

The simplest case is one dimension, where the coefficients c0, c1, ... evaluate to

c0 + c1x + c2x
2 + c3x

3 + ...

The number of terms is arbitrary. If the number of terms is exactly one, it is assumed to be the linear
term (c1) and not the constant term. The following is an example of a voltage-controlled voltage source
which utilizes poly(1).

epolysrc 1 0 poly(1) 3 2 0 2 0.25

The source output appears at node 1 to ground (note that WRspice can use arbitrary strings as node
specifiers). The input is the voltage difference between nodes 3 and 2. The output voltage is twice the
input voltage plus .25 times the square of the input voltage.

In the two dimensional case, the coefficients are interpreted in the following order.

c0 + c1x + c2y + c3x
2 + c4xy + c5y

2 + c6x
3 + c7x

2y + c8xy2 + c9y
3 + ...

For example, to specify a source which produces 3.5*v(3,4) + 1.29*v(8)*v(3,4), one has

exx 1 0 poly(2) 3 4 8 0 0 3.5 0 0 1.29

Note that any coefficients that are unspecified are taken as zero.

The three dimensional case has a coefficient ordering interpretation given by

c0 + c1x + c2y + c3z + c4x
2 + c5xy + c6xz + c7y

2 + c8yz + c9z
2 + c10x

3 + c11x
2y + c12x

2z+

c13xy2 + c14xyz + c15xz2 + c16y
3 + c17y

2z + c18yz2 + c19z
3 + ...

which is rather complex but careful examination reveals the pattern.

2.15. VOLTAGE AND CURRENT SOURCES 85

2.15.3 Tran Functions

There are several built-in source functions, which are based on and extend the source specifications in
SPICE2. These generally produce time-dependent output for use in transient analysis. For brevity, these
functions are referred to as “tran functions”.

The tran functions are listed in the table below. If parameters other than source amplitudes are
omitted, default values will be assumed. The tran functions, which require multiple space or comma
separated arguments in a particular order, are:

exp exponential specification
texp exponential specification
gauss gaussian specification
tgauss gaussian specification
interp interpolation specification
pulse pulse specification
pwl piecewise-linear specification
sffm single frequency fm specification
sin sinusoidal specification
tsin sinusoidal specification
spulse sinusoidal pulse specification
table reference to a .table specification

The the texp, tgauss, and tsin are aliases to exp, gauss, and sin tran functions that avoid possible
ambiguity with math functions of the same name.

Unlike the math functions, the tran functions have variable-length argument lists. If arguments are
omitted, default values are assumed.

The tran functions are most often used to specify voltage/current source output, however in WR-

spice these can be used in general expressions. The sin, exp, gauss tran functions have names that
conflict with math functions. There seems to be no way to absolutely reliably distinguish the tran vs.
math functions by context, nor is it possible to exclusively rename the functions without causing huge
compatibility problems.

Although the sin and exp functions are generally distinguishable except for one unlikely case, with
the additional arguments to the gauss function for HSPICE compatibility in WRspice release 3.0.0, the
problem is more acute.

It may be necessary to edit legacy WRspice input files to avoid this problem.

That being said, new intelligence has been added to differentiate between the two species. As in
older releases, the argument count will in many cases resolve ambiguity.

First of all, to guarantee that the tran functions are used in an expression, they can be called by the
synonym names tsin, texp, and tgauss.

If sin, exp, or gauss use white-space delimiting in the argument list, then they will be called as
tran functions. The math functions always use commas to separate arguments. Commas are also legal
argument separators in tran functions, but (perhaps) are not as frequently used. If comma argument
separators are used, the math functions are assumed.

Note that almost all math functions (whith the exception of gauss and a few others) take a single
complex vector argument. It is possible to give these functions multiple comma-separated “arguments”,
but in evaluation these are collapsed by evaluation of the comma operator:

86 CHAPTER 2. WRSPICE INPUT FORMAT

a,b = (a + j*b)

So, sin(1,1) is equivalent to sin((1+j)), which returns a complex value.

In earlier WRspice releases, sin(a,b) was always interpreted as the tran sin function, which has a
minimum of two arguments (and similar for exp). Presently.

sin(a,b) comma delimiter implies math
sin(a b) space delimiter implies tran

If ambiguity occurs in a function specification for a voltage or current source, the tran function is
favored if the specification is ambiguous.

The tran functions implicitly use time as an independent variable, and generally return 0 in dc
analysis. Exceptions are the pwl and interp forms, which implicitly use the value of “x” which is
context-specific. In dependent sources, this is the controlling value of the source rather than time. The
table function takes its input directly from the second argument.

The tran functions can also be used in regular vector expressions. They generate a vector corre-
sponding to the current scale, which must exist, be real, and monotonically increasing. The length of
the returned vector is equal to the length of the scale.

For example:

(do a tran analysis to establish a reasonable scale)
let a = pulse(0 1 10n 10n 10n 20n)

plot a (plots a pulse waveform)

The construct can be used like any other token in a regular vector expression.

The tran functions (other than table and interp) take constant expressions as arguments. The
argument list consists of comma or space separated expressions. Arguments are parsed as follows:

1. The outer parentheses, if these exist, are stripped from the list. WRspice can recognize most
instances where parentheses are not included, since these are optional in standard SPICE syntax
for the tran functions.

2. Commas that are not enclosed in parentheses or square brackets are converted to spaces.

3. Minus signs (‘-’) that are not enclosed in parentheses or square brackets, and are not followed
by white space, and are preceded by white space, are assumed to be the start of a new token
(argument). An expression termination character (semicolon) is added to the end of the previous
argument.

4. The string is parsed into individual expression units, which are the arguments. The separation is
determined by context.

There is no provision for a unary ‘+’, thus, func(a, +b) is taken as func(a+b). Parenthesis can be
added to enforce precedence. The minus sign handling implies that func(a, -b) and func(a -b) are
taken as func((a), (-b)), whereas f(a-b), f(a- b), f(a - b), etc are taken as func((a)-(b)).

In addition to the built-in functions, expressions used in sources can include user defined functions,
which must have been defined previously with the define command. These may be useful for encapsu-
lating the tran functions.

2.15. VOLTAGE AND CURRENT SOURCES 87

Example:
define mypulse(delay, width) pulse(0 1 delay 1n 1n width)

...

v1 1 0 mypulse(5n, 10n)

Recall that a line in the deck starting with “*@” will be executed before the deck is parsed.

title line

*@ define mypulse(delay, width) pulse(0 1 delay 1n 1n width)

v1 1 0 mypulse(5n, 10n)

r1 1 0 100

.end

The following paragraphs describe the tran functions in detail.

2.15.3.1 Exponential

General Form:
exp(v1 v2 [td1 tau1 td2 tau2])

Example:
vin 3 0 exp(-4 -1 2ns 30ns 60ns 40ns)

This function can be called as texp to avoid possible conflict with the exp math function.

parameter description default value units

v1 initial value volts or amps
v2 pulsed value volts or amps
td1 rise delay time 0.0 seconds
tau1 rise time constant tstep seconds
td2 fall delay time td1 + tstep seconds
tau2 fall time constant tstep seconds

The shape of the waveform is described by the following table:

time value

0 v1
td1 v1 + (v2−v1)(1 − exp(−(time−td1)/tau1))
td2 v1 + (v2−v1)(1 − exp(−(time−td1)/tau1)) +

(v1−v2)(1 − exp(−(time−td2)/tau2))

This function applies only to transient analysis, where time is the running variable. When referring
to default values, tstep is the printing increment and tstop is the final time in transient analysis, see
2.7.9 for explanation. The argument count is used to distinguish this function from the math function
of the same name.

88 CHAPTER 2. WRSPICE INPUT FORMAT

2.15.3.2 Gaussian Random

General Form:
gauss(stddev mean lattice [interp])

Examples:
v1 1 0 gauss(.5, 2, 100n, 1)

v2 1 0 gauss(.1, 0, 0)

This function can be called as tgauss to avoid possible conflict with the gauss math function.

parameter description default value units

stddev standard deviation none
mean mean value none
lattice sample period seconds
interp interpolation 0 none

The gauss function can be used to generate correlated random output. This function takes three or
four arguments.

The parameter lattice is for use in transient analysis. A new random value is computed at each time
increment of lattice. If lattice is 0, then no lattice is used, and an uncorrelated random value is returned
for each call. The interp parameter, used when lattice is nonzero, can have value 1 or 0. If interp is
nonzero, the value returned by the function is the (first order) interpolation of the random values at the
lattice points which frame the time variable. If interp is 0, the function returns the lattice cell’s value
for any time within the lattice cell, i.e., a random step with an amplitude change at every lattice point.

The first example above provides a random signal with standard deviation of .5V and mean of 2V,
based on random samples taken every 100nS.

The lattice value should be on the order of the user print increment tstep in the transient analysis.
It should not be less than the maximum internal time step, since the past history is not stored, and
a rejected time point may back up the time across more than one lattice cell, thus destroying the
correlation.

This function applies only to transient analysis, where time is the running variable. The argument
count is used to distinguish this function from the math function of the same name.

2.15.3.3 Interpolation

General Form:
interp(vector)

Example:
vin 1 0 interp(tran1.v(1))

The output is vector interpolated to the scale of the current plot. When used in a source, the output
of the source is the interpolated vector, or the initial or final value for points off the ends of the original
scale.

2.15. VOLTAGE AND CURRENT SOURCES 89

For example, say an amplifier produces vector v(1) (an output) in plot tran1. One desires to apply
this as input to another circuit. This is achieved with a source specification like that shown in the
example above. This works in ordinary vector expressions as well.

2.15.3.4 Pulse

General Form:
pulse(v1 v2 [td tr tf pw per td1 td2 ...])

Examples:
vin 3 0 pulse(-1 1 2ns 2ns 2ns 50ns 100ns)

vin1 1 0 pulse(0 1 2n .5n .5n 1n 0 6n 10n)

v2 4 0 v(1)*pulse(0 1 5n 10n)

parameter description default value units

v1 initial value volts or amps
v2 pulsed value volts or amps
td delay time 0.0 seconds
tr rise time tstep seconds
tf fall time tstep seconds
pw pulse width tstep seconds
per period tstop seconds

If any of the parameters td1, td2, ... appear, the period is ignored, and the pulse is repeated for the
delays td1 , etc. The output will be a superposition of these pulses. A single pulse is described by the
following table:

time value

0 v1
td v1
td+tr v2
td+tr+pw v2
td+tr+pw+tf v1
tstop v1

Intermediate points are determined by linear interpolation. It is not an error to omit unused param-
eters, for example the specification

vxx 3 0 pulse(0 1 2n 2n)

describes a voltage which, starting from 0, begins rising at 2 nanoseconds, reaching 1 volt at 4 nanosec-
onds, and remains at that value.

This function applies only to transient analysis, where time is the running variable. When referring
to default values, tstep is the printing increment and tstop is the final time in transient analysis, see
2.7.9 for explanation.

90 CHAPTER 2. WRSPICE INPUT FORMAT

2.15.3.5 Piecewise Linear

General Form:
pwl(t1 v1 [t2 v2 t3 v3 t4 v4 ...])

Example:
vclock 7 5 pwl(0 -7 10ns -7 11ns -3 17ns -3 18ns -7 50ns -7)

Each pair of values (ti , vi) specifies that the value of the source is vi (in volts or amps) at time =
ti . The value of the source at intermediate values of time is determined by using linear interpolation on
the input values. For times before the initial time value, the return is the initial value, and for times
after the final time value, the return is the final value.

In dependent sources where the controlling input is specified, a pwl construct if used in the expression
for the source will take as input the value of the controlling input, and not time. This is one means by
which a piecewise-linear transfer function can be implemented. A similar capability exists through the
table function.

Example:

e1 1 0 2 0 pwl(-1 1 0 0 1 1)

The example above implements a perfect rectifier (absolute value generator) for voltages between -1
and 1V. Outside this range, the output is clipped to 1V.

2.15.3.6 Single-Frequency FM

General Form:
sffm(vo va [fc mdi fs])

Example:
v1 12 0 sffm(0 1m 20k 5 1k)

parameter description default value units

vo offset volts or amps
va amplitude volts or amps
fc carrier frequency 1/tstop hz
mdi modulation index 0
fs signal frequency 1/tstop hz

The shape of the waveform is described by the following equation:

value = vo + va·sin((2π·fc·time) + mdi ·sin(2π·fs·time))

This function applies only to transient analysis, where time is the running variable. When referring
to default values, tstep is the printing increment and tstop is the final time in transient analysis, see
2.7.9 for explanation.

2.15. VOLTAGE AND CURRENT SOURCES 91

2.15.3.7 Sinusoidal

General Form:
sin(vo va [freq td theta])

Example:
vin 3 0 sin(0 1 100meg 1ns 1e10)

This function can be called as tsin to avoid possible conflict with the sin math function.

parameter description default value units

vo offset volts or amps
va amplitude volts or amps
freq frequency 1/tstop hz
td delay 0.0 seconds
theta damping factor 0.0 1/seconds

The shape of the waveform is described by the following table:

time value

0 vo
td vo + va·exp(−(time−td)·theta) · sin(2π·freq ·(time+td))

This function applies only to transient analysis, where time is the running variable. When referring
to default values, tstep is the printing increment and tstop is the final time in transient analysis, see
2.7.9 for explanation. The argument count is used to distinguish this function from the math function
of the same name.

2.15.3.8 Sinusoidal Pulse

General Form:
spulse(vo vp [per td decay])

Example:
vin 1 0 spulse(0 1 25ns 40ns 1e8)

parameter description default value units

vo offset volts or amps
vp peak amplitude volts or amps
per period tstop seconds
td delay 0.0 seconds
decay decay const 0.0 1/seconds

The shape of the waveform is described by the following table:

92 CHAPTER 2. WRSPICE INPUT FORMAT

time value

0 vo
td vo + 0.5·(vp−vo)(1 − cos(2π·(time−td)/per)·exp(−(time−td) ·decay))

This function applies only to transient analysis, where time is the running variable. When referring
to default values, tstep is the printing increment and tstop is the final time in transient analysis, see
2.7.9 for explanation.

2.15.3.9 Table Reference

General Form:
table(table name expr)
table name(expr) (for sources only)

Examples:
vin 1 0 table(tab1, v(2))

exx 1 0 2 0 table(tab2, x)

exx 1 0 2 0 tab2(x)

The table referenced must be specified in the input deck with a .table line. The reference to a table
is in the form of a table function, as above, which takes two arguments. The first argument is the name
of a table defined elsewhere in the circuit file with a .table line. The second argument is an expression
which provides input to the table. The return value is the interpolated value from the table.

Tables can also be referenced as part of the ac specification for a dependent or independent source.
These references are used in ac analysis, and have a different referencing syntax.

In the expression used in voltage and current sources, dependent and independent, the second form
can be used and is equivalent. The table name must not conflict with another internal or user-defined
function name.

The table reference provides one means of implementing a piecewise-linear transfer function. This
can also be accomplished by use of the pwl function in dependent sources.

2.15.4 Dependent Sources

WRspice source specifications are completely general in that they allow arbitrary functional dependence
upon circuit variables. However, for compatibility with previous versions of SPICE, the separate keying
of independent and dependent sources is retained. WRspice allows circuits to contain dependent sources
characterized by any of the four equations in the table below.

VCCS i = g(v) Voltage-Controlled Current Source
VCVS v = e(v) Voltage-Controlled Voltage Source
CCCS i = f(i) Current-Controlled Current Source
CCVS v = h(i) Current-Controlled Voltage Source

The functions g, e, f, and h represent transconductance, voltage gain, current gain, and transresis-
tance, respectively.

2.15. VOLTAGE AND CURRENT SOURCES 93

2.15.4.1 Voltage-Controlled Current Sources

This is a special case of the general source specification included for backward compatibility.

General Form:
gname n+ n- nc+ nc- [expr] srcargs
gname n+ n- function | cur [=] expr srcargs
gname n+ n- poly poly spec srcargs
where srcargs = [ac table(name)]

Examples:
g1 2 0 5 0 0.1mmho

g2 2 0 5 0 log10(x)

g3 2 0 function log10(v(5))

The n+ and n- are the positive and negative nodes, respectively. Current flow is from the positive
node, through the source, to the negative node. The parameters nc+ and nc- are the positive and
negative controlling nodes, respectively.

In the first form, if the expr is a constant, it represents the transconductance in siemens. If no
expression is given, a unit constant value is assumed. Otherwise, the expr computes the source current,
where the variable “x” if used in the expr is taken to be the controlling voltage (v(nc+,nc-)). In this
case only, the pwl construct if used in the expr takes as its input variable the value of “x” rather than
time, thus a piecewise linear transfer function can be implemented using a pwl statement. The second
form is similar, but “x” is not defined. The keywords “function” and “cur” are equivalent. The third
form allows use of the SPICE2 poly construct.

More information on the function specification can be found in 2.15, and the poly specification is
described in 2.15.2.

If the ac parameter is given and the table keyword follows, then the named table is taken to
contain complex transfer coefficient data, which will be used in ac analysis (and possibly elsewhere, see
below). For each frequency, the source output will be the interpolated transfer coefficient from the table
multiplied by the input. The table must be specified with a .table line, and must have the ac keyword
given.

If an ac table is specified, and no dc/transient transfer function or coefficient is given, then in transient
analysis, the source transfer will be obtained through Fourier analysis of the table data. This is somewhat
experimental, and may be prone to numerical errors.

In ac analysis, the transfer coefficient can be real or complex. If complex, the imaginary value follows
the real value. Only constants or constant expressions are valid in this case. If the source function is
specified in this way, the real component is used in dc and transient analysis. This will also override a
table, if given.

2.15.4.2 Voltage-Controlled Voltage Sources

This is a special case of the general source specification included for backward compatibility.

General Form:
ename n+ n- nc+ nc- [expr] srcargs

94 CHAPTER 2. WRSPICE INPUT FORMAT

ename n+ n- function | vol [=] expr srcargs
ename n+ n- poly poly spec srcargs
where srcargs = [ac table(name)]

Examples:
e1 2 3 14 1 2.0

e2 2 3 14 1 x+.015*x*x

e3 2 3 function v(14,1)+.015*v(14,1)*v(14,1)

The n+ is the positive node, and n- is the negative node. nc+ and nc- are the positive and negative
controlling nodes, respectively.

In the first form, if the expr is a constant, it represents the linear voltage gain. If no expression is
given, a unit constant value is assumed. Otherwise, the expr computes the source voltage, where the
variable “x” if used in the expr is taken to be the controlling voltage (v(nc+,nc-)). In this case only, the
pwl construct if used in the expr takes as its input variable the value of “x” rather than time, thus a
piecewise linear transfer function can be implemented using a pwl statement. The second form is similar,
but “x” is not defined. The keywords “function” and “vol” are equivalent. The third form allows use
of the SPICE2 poly construct.

More information of the function specification can be found in 2.15, and the poly specification is
described in 2.15.2.

If the ac parameter is given and the table keyword follows, then the named table is taken to
contain complex transfer coefficient data, which will be used in ac analysis (and possibly elsewhere, see
below). For each frequency, the source output will be the interpolated transfer coefficient from the table
multiplied by the input. The table must be specified with a .table line, and must have the ac keyword
given.

If an ac table is specified, and no dc/transient transfer function or coefficient is given, then in transient
analysis, the source transfer will be obtained through Fourier analysis of the table data. This is somewhat
experimental, and may be prone to numerical errors.

In ac analysis, the transfer coefficient can be real or complex. If complex, the imaginary value follows
the real value. Only constants or constant expressions are valid in this case. If the source function is
specified in this way, the real component is used in dc and transient analysis. This will also override a
table, if given.

2.15.4.3 Current-Controlled Current Sources

This is a special case of the general source specification included for backward compatibility.

General Form:
fname n+ n- vnam expr srcargs
fname n+ n- function | cur [=] expr srcargs
fname n+ n- poly poly spec srcargs
where srcargs = [ac table(name)]

Examples:
f1 13 5 vsens 5

f2 13 5 1-x*x ac table(acdata)

f3 13 5 function 1-i(vsens)*i(vsens)

2.15. VOLTAGE AND CURRENT SOURCES 95

The n+ and n- are the positive and negative nodes, respectively. Current flow is from the positive
node, through the source, to the negative node. The parameter vnam is the name of a voltage source or
inductor through which the controlling current flows. If vnam refers to a voltage source, the direction of
positive controlling current flow is from the positive node, through the source, to the negative node. If
vnam names an inductor, the current flow is from the first node specified for the inductor, through the
inductor, to the second node.

In the first form, if the expr is a constant, it represents the linear current gain. If no expression is
given, a unit constant value is assumed. Otherwise, the expr computes the source current, where the
variable “x” if used in the expr is taken to be the controlling current (i(vnam)). In this case only, the
pwl construct if used in the expr takes as its input variable the value of “x” rather than time, thus a
piecewise linear transfer function can be implemented using a pwl statement. The second form is similar,
but “x” is not defined. The keywords “function” and “cur” are equivalent. The third form allows use
of the SPICE2 poly construct.

More information of the function specification can be found in 2.15, and the poly specification is
described in 2.15.2.

If the ac parameter is given and the table keyword follows, then the named table is taken to
contain complex transfer coefficient data, which will be used in ac analysis (and possibly elsewhere, see
below). For each frequency, the source output will be the interpolated transfer coefficient from the table
multiplied by the input. The table must be specified with a .table line, and must have the ac keyword
given.

If an ac table is specified, and no dc/transient transfer function or coefficient is given, then in transient
analysis, the source transfer will be obtained through Fourier analysis of the table data. This is somewhat
experimental, and may be prone to numerical errors.

In ac analysis, the transfer coefficient can be real or complex. If complex, the imaginary value follows
the real value. Only constants or constant expressions are valid in this case. If the source function is
specified in this way, the real component is used in dc and transient analysis. This will also override a
table, if given.

2.15.4.4 Current-Controlled Voltage Sources

This is a special case of the general source specification included for backward compatibility.

General Form:
hname n+ n- vnam expr srcargs
hname n+ n- function | vol [=] expr srcargs
hname n+ n- poly poly spec srcargs
where srcargs = [ac table(name)]

Examples:
h1 5 17 vz 0.5k

h2 5 17 0.71,0.71

h3 5 17 vz 2.5*exp(x/2.5) ac table(myvals)

h2 5 17 function 2.5*exp(i(vz)/2.5)

Above, n+ and n- are the positive and negative nodes, respectively. The parameter vnam is the
name of a voltage source or inductor through which the controlling current flows. If nam references a
voltage source, the direction of positive controlling current flow is from the positive node, through the

96 CHAPTER 2. WRSPICE INPUT FORMAT

source, to the negative node. If vnam references an inductor, the controlling current flows from the first
node specified for the inductor, through the inductor, to the second node.

In the first form, if the expr is a constant, it represents the transresistance in ohms. If no expression
is given, a unit constant value is assumed. Otherwise, the expr computes the source voltage, where the
variable “x” if used in the expr is taken to be the controlling current (i(vnam)). In this case only, the
pwl construct if used in the expr takes as its input variable the value of “x” rather than time, thus a
piecewise linear transfer function can be implemented using a pwl statement. The second form is similar,
but “x” is not defined. The keywords “function” and “vol” are equivalent. The third form allows use
of the SPICE2 poly construct.

More information of the function specification can be found in 2.15, and the poly specification is
described in 2.15.2.

If the ac parameter is given and the table keyword follows, then the named table is taken to
contain complex transfer coefficient data, which will be used in ac analysis (and possibly elsewhere, see
below). For each frequency, the source output will be the interpolated transfer coefficient from the table
multiplied by the input. The table must be specified with a .table line, and must have the ac keyword
given.

If an ac table is specified, and no dc/transient transfer function or coefficient is given, then in transient
analysis, the source transfer will be obtained through Fourier analysis of the table data. This is somewhat
experimental, and may be prone to numerical errors.

In ac analysis, the transfer coefficient can be real or complex. If complex, the imaginary value follows
the real value. Only constants or constant expressions are valid in this case. If the source function is
specified in this way, the real component is used in dc and transient analysis. This will also override a
table, if given.

2.16 Semiconductor Devices

The standard WRspice device library contains models for the semiconductor devices listed in the table
below. Each of these devices references a corresponding model supplied on a .model line (see 2.13). The
model supplies most of the parameters that specify device behavior. If a corresponding model is not
found, usually a warning is issued and a default model is used.

Device Name Key
Junction Diode dio d

Bipolar Junction Transistor bjt q

Junction Field-Effect Transistor jfet j

MESFET mes z

MOSFET mos m

Each device element line contains the device name, the nodes to which the device is connected,
and the device model name. In addition, other optional parameters may be specified for some devices:
geometric factors and an initial condition.

The area factor used on the device lines determines the number of equivalent parallel devices of a
specified model. The affected parameters are marked with an asterisk under the heading “area” in the
model descriptions. Several geometric factors associated with the channel and the drain and source
diffusions can be specified on the MOSFET device line.

Two different forms of initial conditions may be specified for some devices. The first form is included

2.16. SEMICONDUCTOR DEVICES 97

to improve the dc convergence for circuits that contain more than one stable state. If a device is specified
off, the dc operating point is determined with the device internal terminal voltages (not external node
voltages!) for that device set to zero. This effectively makes the device an open circuit. After convergence
is obtained, the program continues to iterate to obtain the exact value for the terminal voltages. If a
circuit has more than one dc stable state, the off option can be used to force the solution to correspond
to a desired state. If a device is specified off when in reality the device is conducting, the program will
still obtain the correct solution (assuming the solutions converge) but more iterations will be required
since the program must independently converge to two separate solutions. The .nodeset line serves a
similar purpose as the off option. The .nodeset directive is easier to apply and is the preferred means
to aid convergence in this situation.

The second form of initial condition is specified for use with transient analysis. These are true initial
conditions as opposed to the convergence aids above. See the description of the .ic line and the .tran

line for a detailed explanation of initial conditions.

2.16.1 Junction Diodes

General Form:
dname n+ n- modname [parameters ...]

Parameter Name Description

off Device is initially nonconducting, for circuit convergence assistance.
ic=vj The initial junction voltage (initial condition) for transient analysis.
area=val Scale factor that multiplies all currents and other values, effectively modi-

fying the diode area.
m=val Device multiplicity factor, similar to area.
pj=val Perimeter scale factor for sidewell.
temp=val Device operating temperature, degrees celsius.
dtemp=val Device operating temperature difference from circuit operating tempera-

ture. This is overruled if temp is also given.

Examples:
dbridge 2 10 diode1

dclmp 3 7 dmod 3.0 ic=0.2

The n+ and n- are the positive and negative nodes, respectively. The parameter modname is the
model name, area specifies the area factor, temp specifies the operating temperature, and off indicates
an (optional) starting condition of the device for dc analysis. If the area factor is omitted, a value of
1.0 is assumed. The (optional) initial voltage specification using ic=vd is intended for use with the uic

option in transient analysis, when a transient analysis is desired starting from other than the quiescent
operating point. The .ic line provides another way to set transient initial conditions.

2.16.2 Diode Model

Type Name: d

The dc characteristics of the diode are determined by the parameters is and n. An ohmic resistance,
rs, is included. Charge storage effects are modeled by a transit time, tt, and a nonlinear depletion
layer capacitance which is determined by the parameters cjo, vj, and m. The temperature dependence

98 CHAPTER 2. WRSPICE INPUT FORMAT

of the saturation current is defined by the parameters eg, the energy, and xti, the saturation current
temperature exponent. The nominal temperature at which these parameters were measured is tnom,
which defaults to the value specified on the .options control line. Reverse breakdown is modeled by an
exponential increase in the reverse diode current and is determined by the parameters bv and ibv (both
of which are positive numbers).

The diode model is an enhanced version of the SPICE3 diode model, as used in NGspice, but with
additional support for HSPICE model parameters.

The parameters marked with an asterisk in the area column scale with the area and/or the m

(multiplicity) parameters given in the device line. The parameters marked with two asterisks scale with
the pj (perimeter factor) parameter given in the device line.

2.16. SEMICONDUCTOR DEVICES 99

Diode Model Parameters
name area parameter units default example

is, js ∗ saturation current A 1.0e-14 1.0e-14
jsw ∗∗ sidewall saturation current A 0
rs ∗ ohmic resistance Ω 0 10
trs, trs1 ohmic resistance 1st order temp

coeff
- 0

trs2 ohmic resistance 2nd order temp
coeff

- 0

n emission coefficient - 1 1.0
tt transit-time S 0 0.1ns
tt1 transit-time 1st order temp coeff - 0
tt2 transit-time 2nd order temp coeff - 0
cjo, cj0, cj ∗ zero-bias junction capacitance F 0 2PF
vj, pb junction potential V 1 0.6
m, mj grading coefficient - 0.5 0.5
tm1 grading coefficient 1st temp coeff - 0
tm2 grading coefficient 1nd temp coeff - 0
cjp, cjsw ∗∗ sidewall junction capacitance F 0
php sidewall junction potential V 0
mjsw sidewall grading coefficient - 0.33
ikf, ik ∗ forward knee current A 1e-3
ikr reverse knee current A 1e-3
eg activation energy eV 1.11 1.11 Si,

0.69 Sbd,
0.67 Ge

xti saturation-current temperature
exponent

- 3.0 3.0 junc,
2.0 Sbd

kf flicker noise coefficient - 0 -
af flicker noise exponent - 1 -
fc forward-bias junction fit

parameter
- 0.5

fcs forward-bias sidewall junction fit
parameter

- 0.5

bv reverse breakdown voltage V infinite 40.0
ibv current at breakdown voltage A 1.0e-3 2.0e-3
tnom, tref parameter measurement

temperature
C 25 50

Hspice Compatibility
level device type selector
tlev equation set selector
tlevc equation set selector
area area default
pj sidewall perimeter factor default
cta junction capacitance temp. coeff.
ctp sidewall capacitance temp. coeff.
tcv breakdown voltage temp. coeff.
tcv junction potential temp. coeff.
tcv sidewall potential temp. coeff.

100 CHAPTER 2. WRSPICE INPUT FORMAT

The HSPICE compatibility parameters provide some minimal compatibility with the HSPICE diode
model. The level parameter, if present, can take values of 1 and 3, corresponding to the HSPICE
junction and geometric junction models. There is presently no support for the level=2 Fowler-Nordheim
model. The tlev and tlevc parameters switch equation sets. Both take values of 0 and 1, and if set to
any other value will assume a value of 1, i.e., higher values are not supported. The remaining parameters
are as defined in the HSPICE documentation.

2.16.3 Bipolar Junction Transistors (BJTs)

General Form:
qname nc nb ne [ns] modname [parameters ...]

Parameter Name Description

off Device is initially nonconducting, for circuit convergence assistance.
area=val Scale factor that multiplies all currents and other values, effectively modi-

fying the BJT area.
ic=vbe,vce The initial voltages (initial condition) for transient analysis.
icvbe=vbe The initial vbe (initial condition) for transient analysis.
icvce=vce The initial vce (initial condition) for transient analysis.
temp=val Device operating temperature, degrees celsius.

Examples:
q23 10 24 13 qmod ic=0.6,5.0

q50a 11 26 4 20 mod1

The nc, nb, and ne are the collector, base, and emitter nodes, respectively, and ns is the (optional)
substrate node. If unspecified, ground is used. The modname is the model name, area specifies the area
factor, temp specifies the operating temperature, and off indicates an initial condition of the device for
the dc analysis. If the area factor is omitted, a value of 1.0 is assumed. The initial conditions specified
using ic or alternatively icvbe and icvce are intended for use with the uic option in transient analysis,
when a transient analysis is desired starting from other than the quiescent operating point. The .ic

line provides another way to set transient initial conditions.

2.16.4 BJT Models (both NPN and PNP)

Type Names: npn, pnp

The bipolar junction transistor model in WRspice is an adaptation of the integral charge control
model of Gummel and Poon. This modified Gummel-Poon model extends the original model to include
several effects at high bias levels. The model will automatically simplify to the simpler Ebers-Moll model
when certain parameters are not specified. The parameter names used in the modified Gummel-Poon
model have been chosen to be more easily understood by the program user, and to reflect better both
physical and circuit design thinking.

The dc model is defined by the parameters is, bf, nf, ise, ikf, and ne which determine the
forward current gain characteristics, is, br, nr, isc, ikr, and nc which determine the reverse current
gain characteristics, and vaf and var which determine the output conductance for forward and reverse
regions. Three ohmic resistances rb, rc, and re are included, where rb can be high current dependent.
Base charge storage is modeled by forward and reverse transit times, tf and tr, the forward transit time

2.16. SEMICONDUCTOR DEVICES 101

tf being bias dependent if desired, and nonlinear depletion layer capacitances which are determined by
cje, vje, and mje for the B-E junction, cjc, vjc, and mjc for the B-C junction, and cjs, vjs, and mjs

for the C-S (Collector-Substrate) junction. The temperature dependence of the saturation current, is, is
determined by the energy gap, eg, and the saturation current temperature exponent, xti. Additionally
base current temperature dependence is modeled by the beta temperature exponent xtb in the new
model. The values specified are assumed to have been measured at the temperature tnom, which can be
specified on the .options line or overridden by a specification on the .model line.

The BJT parameters used in the modified Gummel-Poon model are listed below. The parameter
names used in earlier versions of SPICE2 are still accepted. The parameters marked with an asterisk in
the area column scale with the area parameter given in the device line.

There is also a level=4 BJT model which uses the VBIC equation set, as used in the NGspice-17
simulator. This model is documented elsewhere.

BJT Model Parameters
name area parameter units default example

is ∗ transport saturation current A 1.0e-16 1.0e-15
bf ideal maximum forward beta - 100 100
nf forward current emission

coefficient
- 1.0 1

vaf forward Early voltage V infinite 200
ikf ∗ corner for forward beta high

current roll-off
A infinite 0.01

ise ∗ B-E leakage saturation current A 0 1.0e-13
ne B-E leakage emission coefficient - 1.5 2
br ideal maximum reverse beta - 1 0.1
nr reverse current emission

coefficient
- 1 1

var reverse Early voltage V infinite 200
ikr ∗ corner for reverse beta high

current roll-off
A infinite 0.01

isc ∗ B-C leakage saturation current A 0 1.0e-13
nc B-C leakage emission coefficient - 2 1.5
rb ∗ zero bias base resistance Ω 0 100
ikb ∗ current where base resistance

falls halfway to its min value
A infinite 0.1

rbm ∗ minimum base resistance at high
currents

Ω rb 10

re ∗ emitter resistance Ω 0 1
rc ∗ collector resistance Ω 0 10
cje ∗ B-E zero-bias depletion

capacitance
F 0 2pf

vje B-E built-in potential V 0.75 0.6
mje B-E junction exponential factor - 0.33 0.33
tf ideal forward transit time S 0 0.1ns
xtf coefficient for bias dependence of

tf

- 0 -

vtf voltage describing VBC
dependence of tf

V infinite -

102 CHAPTER 2. WRSPICE INPUT FORMAT

itf ∗ high-current parameter for effect
on tf

A 0 -

ptf excess phase at freq=1.0/(tf·2π)
Hz

deg 0 -

cjc ∗ B-C zero-bias depletion
capacitance

F 0 2pf

vjc B-C built-in potential V 0.75 0.5
mjc B-C junction exponential factor - 0.33 0.5
xcjc fraction of B-C depletion

capacitance connected to
internal base node

- 1 -

tr ideal reverse transit time S 0 10ns
cjs ∗ zero-bias collector-substrate

capacitance
F 0 2pf

vjs substrate junction built-in
potential

V 0.75 -

mjs substrate junction exponential
factor

- 0 0.5

xtb forward and reverse beta
temperature exponent

- 0 -

eg energy gap for temperature
effect on is

eV 1.11 -

xti temperature exponent for effect
on is

- 3 -

kf flicker-noise coefficient - 0 -
af flicker-noise exponent - 1 -
fc coefficient for forward-bias

depletion capacitance formula
- 0.5 -

tnom parameter measurement
temperature

C 25 50

2.16.5 Junction Field-Effect Transistors (JFETs)

General Form:
jname nd ng ns modname [parameters ...]

Parameter Name Description

off Device is initially nonconducting, for circuit convergence assistance.
area=val Scale factor that multiplies all currents and other values, effectively modi-

fying the JFET area.
ic=vds,vgs The initial voltages (initial condition) for transient analysis.
icvds=vds The initial vds (initial condition) for transient analysis.
icvgs=vgs The initial vgs (initial condition) for transient analysis.
temp=val Device operating temperature, degrees celsius.

Examples:

2.16. SEMICONDUCTOR DEVICES 103

j1 7 2 3 jm1 off

j43 10 4 1 jmod2 area=2

The nd , ng , and ns are the drain, gate, and source nodes, respectively. The modname is the model
name, area specifies the area factor, temp specifies the operating temperature, and off indicates an
(optional) initial condition of the device for dc analysis. If the area factor is omitted, a value of 1.0 is
assumed. The initial conditions specified using ic or alternatively icvds and icvgs are intended for use
with the uic option in transient analysis, when a transient analysis is desired starting from other than
the quiescent operating point. The .ic line provides another way to set initial conditions.

2.16.6 JFET Models (both N and P Channel)

Type Names: njf, pjf

There are two JFET models available, selectable with the level parameter given in the list of model
parameters. If level=2 is given, the Parker-Skellern JFET model from Macquarie University in Sydney,
Australia will be used. Parameters given must apply to that model. Documentation for this model is
available from the Whiteley Research web site, or from
http://www.elec.mq.edu.au/cnerf/spice/spice.html.

If no level parameter is given, or is set to something other than 2, the standard SPICE3 JFET
model will be used. This JFET model is derived from the FET model of Shichman and Hodges. The
dc characteristics are defined by the parameters vto and beta, which determine the variation of drain
current with gate voltage, lambda, which determines the output conductance, and is, the saturation
current of the two gate junctions. Two ohmic resistances, rd and rs, are included. Charge storage is
modeled by nonlinear depletion layer capacitances for both gate junctions which vary as the -1/2 power
of junction voltage and are defined by the parameters cgs, cgd, and pb. The fitting parameter b is a
new addition, see[7].

The parameters marked with an asterisk in the area column scale with the area parameter given in
the device line.

104 CHAPTER 2. WRSPICE INPUT FORMAT

JFET Model Parameters
name area parameter units default example

vto threshold voltage V -2.0 -2.0
beta ∗ transconductance parameter A/V 2 1.0e-4 1.0e-3
lambda channel length modulation

parameter
1/V 0 1.0e-4

rd ∗ drain ohmic resistance Ω 0 100
rs ∗ source ohmic resistance Ω 0 100
cgs ∗ zero-bias G-S junction

capacitance
F 0 5pf

cgd ∗ zero-bias G-D junction
capacitance

F 0 1pf

pb gate junction potential V 1 0.6
is ∗ gate junction saturation current A 1.0e-14 1.0e-14
b doping tail parameter - 1 1.1
kf flicker noise coefficient - 0 -
af flicker noise exponent - 1 -
fc coefficient for forward-bias

depletion capacitance formula
- 0.5 -

tnom parameter measurement
temperature

C 25 50

2.16.7 MESFETs

General Form:
zname nd ng ns modname [parameters ...]

Parameter Name Description

off Device is initially nonconducting, for circuit convergence assistance.
area=val Scale factor that multiplies all currents and other values, effectively modi-

fying the MESFET area.
ic=vds,vgs The initial voltages (initial condition) for transient analysis.
icvds=vds The initial vds (initial condition) for transient analysis.
icvgs=vgs The initial vgs (initial condition) for transient analysis.

Examples:
z1 7 2 3 zm1 off

zout 21 4 16 zmod1 area=5

The nd , ng , and ns are the drain, gate, and source nodes, respectively. The modname is the model
name, area specifies the area factor, and off indicates an initial condition of the device for dc analysis.
If the area factor is omitted, a value of 1.0 is assumed. The initial condition specified using ic or
alternatively icvds and icvgs are intended for use with the uic option in transient analysis, when
a transient analysis is desired starting from other than the quiescent operating point. The .ic line
provides another way to set initial conditions.

2.16. SEMICONDUCTOR DEVICES 105

2.16.8 MESFET Models (both N and P Channel)

Type Names: nmf, pmf

The MESFET model is derived from the GaAs FET model of Statz et al. as described in[10]. The dc
characteristics are defined by the parameters vto, b, and beta, which determine the variation of drain
current with gate voltage, alpha, which determines saturation voltage, and lambda, which determines
the output conductance. The formula are given by

Id =
β(Vgs − VT)2

1 + b(Vgs − VT)

(

1 −
(

1 − α
Vds

3

)3
)

(1 + λVds) for 0 < Vds < 3/α

Id =
β(Vgs − VT)2

1 + b(Vgs − VT)
(1 + λVds) for Vds > 3/α

Two ohmic resistances, rd and rs, are included. Charge storage is modeled by total gate charge as
a function of gate-drain and gate-source voltages and is defined by the parameters cgs, cgd, and pb.

The parameters marked with an asterisk in the area column scale with the area parameter given in
the device line.

MES Model Parameters
name area parameter units default example

vto pinch-off voltage V -2.0 -2.0
beta ∗ transconductance parameter A/V 2 1.0e-4 1.0e-3
b ∗ doping tail extending parameter 1/V 0.3 0.3
alpha ∗ saturation voltage parameter 1/V 2 2
lambda channel length modulation

parameter
1/V 0 1.0e-4

rd ∗ drain ohmic resistance Ω 0 100
rs ∗ source ohmic resistance Ω 0 100
cgs ∗ zero-bias G-S junction

capacitance
F 0 5pf

cgd ∗ zero-bias G-D junction
capacitance

F 0 1pf

pb gate junction potential V 1 0.6
kf flicker noise coefficient - 0 -
af flicker noise exponent - 1 -
fc coefficient for forward-bias

depletion capacitance formula
- 0.5 -

2.16.9 MOSFETs

General Form:
mname nd ng ns nb modname [parameters ...]

106 CHAPTER 2. WRSPICE INPUT FORMAT

Parameter Name Description

off Device is initially nonconducting, for circuit convergence assistance.
m=val Device multiplicity factor.
l=val Channel length in meters.
w=val Channel width in meters.
ad=val Drain diffusion area in square meters.
as=val Source diffusion area in square meters.
pd=val Drain junction perimeter in meters.
ps=val Source junction perimeter in meters.
nrd=val Drain equivalent squares for resistance.
nrs=val Source equivalent squares for resistance.
ic=vds,vgs,vbs The initial voltages (initial condition) for transient analysis.
icvds=vds The initial vds (initial condition) for transient analysis.
icvgs=vgs The initial vgs (initial condition) for transient analysis.
icvbs=vbs The initial vbs (initial condition) for transient analysis.
temp=val Device operating temperature, degrees celsius.

Examples:
m1 24 2 0 20 type1

m31 2 17 6 10 modm l=5u w=2u

m1 2 9 3 0 mod1 l=10u w=5u ad=100p as=100p pd=40u ps=40u

The parameters listed above are representative of the SPICE3 MOS models, but except for ‘m’ are
fairly universal. Some third-party MOS models may have additional nodes and parameters. Consult the
model documentation for the full listing.

The nd , ng , ns, and nb are the drain, gate, source, and bulk (substrate) nodes, respectively. The
modname is the model name, l and w specify the channel length and width in meters, and ad and as

specify the areas of the drain and source diffusions in sq-meters. Note that the suffix ‘u’ specifies microns
(1E-6 m) and ‘p’ sq-microns (1E-12 sq-m). If any of l, w, ad, or as are not specified, default values
are used. The use of defaults simplifies input file preparation, as well as the editing required if device
geometries are to be changed. The pd and ps specify the perimeters of the drain and source junctions in
meters, nrd and nrs designate the equivalent number of squares of the drain and source diffusions; these
values multiply the sheet resistance rsh specified on the .model line for an accurate representation of the
parasitic series drain and source resistance of each transistor. The pd and ps default to 0.0 while nrd and
nrs default to 1.0. The parameter off indicates an initial condition of the device for dc analysis. The
initial conditions specified using ic or alternatively icvds, icvgs amd icvbs are intended for use with
the uic option in transient analysis, when a transient analysis is desired starting from other than the
quiescent operating point. operating point. The .ic line provides another way to set initial conditions.

MOS devices using model levels 1–3 accept a real parameter “m” which scales all the instance capac-
itances, areas, and currents by the given factor. This can be used as a short-cut for modeling multiple
devices, e.g., m = 2 is equivalent to two identical devices in parallel. This is not available for most of
the more complicated and third-party models.

2.16.10 MOSFET Models (both N and P channel)

Type Names: nmos, pmos

WRspice provides the basic MOS models provided in SPICE2/3, plus third-party models from various
development groups. A complete listing of the MOS models supported in the current WRspice release is

2.16. SEMICONDUCTOR DEVICES 107

provided below. Documentation for the third-party models is available on the Whiteley Research web
site. This section will describe the features common to all MOS models.

The level parameter in the MOS model description specifies the model to be used. Where possible,
the level chosen for the imported models will match the level used in Synopsys HSPICE.

2.16.10.1 MOS Default Values

The MOS device length, width, source area and drain area will default to common values if not specified
for a device. These values are set by the following variables:

Variable Purpose Default

defad drain area 0 M2

defas source area 0 M2

defl gate length 1 uM
defw gate width 1 uM

2.16.10.2 MOS Model Binning

WRspice supports MOS model selection by the L and W MOS element line. This facility is used to
automatically select the proper model for a specific device dimension, from among several models which
are nominally similar but optimized for a particular device size. This facility works with any of the MOS
model levels.

The MOS models for the specified ranges should use the same “base” name plus an arbitrary but
unique extension separated from the base name with a period. The element line should refer to the
model by the base name. Each of the different models with the same base name should have ranges
specified with the model parameters LMIN, LMAX, WMIN, WMAX. The model associated with an instance is
the first model found such that the base name matches, and LMIN <= L <= LMAX and WMIN <= W <=

WMAX. If the MIN/MAX parameters are not found in a model line, the test is always true, i.e., if no
MIN/MAX parameters are specified in a model, that model would match any L, W.

Example:

m1 1 2 3 4 nm l=1.5u w=1u

m2 a b c d nm l=3u w=5u

...

.model nm.1 nmos(level=8 lmin=1u lmax=2u wmin=1u wmax=2u ...)

.model nm.2 nmos(level=8 lmin=2u lmax=4u wmin=1u wmax=2u ...)

.model nm.3 nmos(level=8 lmin=1u lmax=2u wmin=2u wmax=5u ...)

.model nm.4 nmos(level=8 lmin=2u lmax=4u wmin=2u wmax=5u ...)

.model nm.5 nmos(level=8 ...)

In this example m1 would use model nm.1, and m2 would use nm.4. The model nm.5 is a “catch all”
for elements that don’t match the other models. The extension can be omitted in one of the model
names.

If a model that uses selection cannot be resolved, the circuit run will be aborted.

108 CHAPTER 2. WRSPICE INPUT FORMAT

2.16.10.3 SPICE2/3 Legacy Models

This section describes the basic SPICE2/3 models. The level 1–3 and 6 models can be used for quick anal-
ysis and examples, but are probably not suitable for serious design work using modern deep-submicron
devices. The BSIM1 and BSIM2 models are for compatibility only, and are not likely to be useful except
for analysis of legacy projects.

The dc characteristics of the level 1 through level 3 MOSFETs are defined by the device parameters
vto, kp, lambda, phi and gamma. These parameters are computed by WRspice if process parameters
(nsub, tox, ...) are given, but user-specified values always override. The parameter vto is positive
(negative) for enhancement mode and negative (positive) for depletion mode N-channel (P-channel)
devices. Charge storage is modeled by three constant capacitors, cgso, cgdo, and cgbo which represent
overlap capacitances, by the nonlinear thin-oxide capacitance which is distributed among the gate, source,
drain, and bulk regions, and by the nonlinear depletion-layer capacitances for both substrate junctions
divided into bottom and periphery, which vary as the mj and mjsw power of junction voltage respectively,
and are determined by the parameters cbd, cbs, cj, cjsw, mj, mjsw and pb. Charge storage effects are
modeled by the piecewise linear voltage dependent capacitance model proposed by Meyer. The thin-
oxide charge storage effects are treated slightly differently for the level 1 model. These voltage-dependent
capacitances are included only if tox is specified in the input description and they are represented using
Meyer’s formulation.

There is some overlap among the parameters describing the junctions, e.g., the reverse current can be
input either as is (in Amps) or as js (in Amps/m2). Whereas the first is an absolute value, the second
is multiplied by ad and as to give the reverse current of the drain and source junctions respectively. This
methodology has been chosen to avoid always relating junction characteristics with ad and as entered
on the device line; the areas can be defaulted. The same idea applies also to the zero-bias junction
capacitances cbd and cbs (in Farads) on one hand, and cj (in F/m2) on the other. The parasitic drain
and source series resistance can be expressed as either rd and rs (in ohms) or rsh (in ohms/sq.), the
latter being multiplied by the number of squares nrd and nrs input on the device line.

MOS Level 1 to Level 3 Parameters
name parameter units default example

level Model index - 1
vto zero-bias threshold voltage V 0.0 1.0
kp transconductance parameter A/V 2 2.0e-5 3.1e-5

gamma bulk threshold parameter V 1/2 0.0 0.37
phi surface potential V 0.6 0.65
lambda channel-length modulation

(MOS1 and MOS2 only)
1/V 0.0 0.02

rd drain ohmic resistance Ω 0.0 1.0
rs source ohmic resistance Ω 0.0 1.0
cbd zero-bias B-D junction

capacitance
F 0.0 20fF

cbs zero-bias B-S junction
capacitance

F 0.0 20fF

is bulk junction saturation current A 1.0e-14 1.0e-15
pb bulk junction potential A 0.8 0.87
cgso gate-source overlap capacitance

per channel width
F/M 0.0 4.0e-11

2.16. SEMICONDUCTOR DEVICES 109

cgdo gate-drain overlap capacitance
per channel width

F/M 0.0 4.0e-11

cgbo gate-bulk overlap capacitance
per channel length

F/M 0.0 2.0e-10

rsh drain and source diffusion sheet
resistance

Ω/2 0.0 10.0

cj zero-bias bulk junction bottom
capacitance per junction area

F/M2 0.0 2.0e-4

mj bulk junction bottom grading
coeff

- 0.5 0.5

cjsw zero-bias bulk junction sidewall
capacitance per junction
perimeter

F/M 0.0 1.0e-9

mjsw bulk junction sidewall grading
coeff.

- 0.50 (level 1),
0.33 (level 2,3)

-

js bulk junction saturation current
per junction area

A/M2 1.0e-8 -

tox oxide thickness M 1.0e-7 1.0e-7
nsub substrate doping 1/cM3 0.0 4.0e15
nss surface state density 1/cM2 0.0 1.0e10
nfs fast surface state density 1/cM2 0.0 1.0e10
tpg type of gate material: +1 opp.

to substrate, -1 same as
substrate, 0 Al gate

- 1.0 -

xj metallurgical junction depth M 0.0 1u
ld lateral diffusion M 0.0 0.8u
uo surface mobility cM2/V S 600 700
ucrit critical field for mobility

degradation (MOS2 only)
V/cM 1.0e4 1.0e4

uexp critical field exponent in mobility
degradation (MOS2 only)

- 0.0 0.1

utra transverse field coeff (mobility)
(deleted for MOS2)

- 0.0 0.3

vmax maximum drift velocity of
carriers

M/S 0.0 5.0e4

neff total channel charge (fixed and
mobile) coefficient (MOS2 only)

- 1.0 5.0

kf flicker noise coefficient - 0.0 1.0e-26
af flicker noise exponent - 1.0 1.2
fc coefficient for forward-bias

depletion capacitance formula
- 0.5 -

delta width effect on threshold voltage
(MOS2 and MOS3)

- 0.0 1.0

theta mobility modulation (MOS3
only)

1/V 0.0 0.1

eta static feedback (MOS3 only) - 0.0 1.0
kappa saturation field factor (MOS3

only)
- 0.2 0.5

110 CHAPTER 2. WRSPICE INPUT FORMAT

tnom parameter measurement
temperature

C 25 50

The level 4 (BSIM1) parameters are all values obtained from process characterization, and can be
generated automatically. J. Pierret[3] describes a means of generating a “process” file, and the program
proc2mod provided with WRspice will convert this file into a sequence of .model lines suitable for inclusion
in WRspice input. Parameters marked below with an * in the l/w column also have corresponding
parameters with a length and width dependency. For example, vfb is the basic parameter with units of
volts, and lvfb and wvfb also exist and have units of volt-µmeter. The formula

P = P0 +
PL

Leffective
+

PW

Weffective

is used to evaluate the parameter for the actual device specified with

Leffective = Linput − dl

and

Weffective = Winput − dw.

Note that unlike the other models in WRspice, the BSIM model is designed for use with a process
characterization system that provides all the parameters, thus there are no defaults for the parameters,
and leaving one out is considered an error. For an example set of parameters and the format of a process
file, see the SPICE2 implementation notes[2].

BSIM (Level 4) Parameters
name l/w parameter units

vfb ∗ flat-band voltage V
phi ∗ surface inversion potential V

k1 ∗ body effect coefficient V 1/2

k2 ∗ drain/source depletion charge sharing coefficient -
eta ∗ zero-bias drain-induced barrier lowering

coefficient
-

muz zero-bias mobility cM2/V S
dl shortening of channel µM
dw narrowing of channel µM
u0 ∗ zero-bias transverse-field mobility degradation

coefficient
V −1

u1 ∗ zero-bias velocity saturation coefficient µM/V
x2mz ∗ sens. of mobility to substrate bias at Vds = 0 cM2/V 2S
x2e ∗ sens. of drain-induced barrier lowering to

substrate bias
V −1

x3e ∗ sens. of drain-induced barrier lowering to drain
bias at Vds = Vdd

V −1

2.16. SEMICONDUCTOR DEVICES 111

x2u0 ∗ sens. of transverse field mobility degradation to
substrate bias

V−2

x2u1 ∗ sens. of velocity saturation effect to substrate
bias

µMV −2

mus mobility at zero substrate bias and at Vds = Vdd cM2/V 2S
x2ms ∗ sens. of mobility to substrate bias at Vds = Vdd cM2/V 2S
x3ms ∗ sens. of mobility to drain bias at Vds = Vdd cM2/V 2S
x3u1 ∗ sens. of velocity saturation effect on drain bias at

Vds = Vdd
µMV −2

tox gate oxide thickness µM
temp temperature at which parameters were measured C
vdd measurement bias range V
cgdo gate-drain overlap capacitance per channel width F/M
cgso gate-source overlap capacitance per channel

width
F/M

cgbo gate-bulk overlap capacitance per channel length F/M
xpart gate-oxide capacitance charge model flag -
n0 ∗ zero-bias subthreshold slope coefficient -
nb ∗ sens. of subthreshold slope to substrate bias -
nd ∗ sens. of subthreshold slope to drain bias -
rsh drain and source diffusion sheet resistance Ω/2

js source drain junction current density A/M2

pb built in potential of source drain junction V
mj grading coefficient of source drain junction -
pbsw built in potential of source,drain junction sidewall V
mjsw grading coefficient of source drain junction

sidewall
-

cj source drain junction capacitance per unit area F/M2

cjsw source drain junction sidewall capacitance per
unit length

F/M

wdf source drain junction default width M
dell source drain junction length reduction M

The parameter xpart = 0 selects a 40/60 drain/source charge partition in saturation, while xpart

= 1 selects a 0/100 drain/source charge partition.

2.16.10.4 Imported MOS Models

The device library supplied with WRspice contains a number of MOS models supplied by various devel-
opment groups. The models that are currently provided in the device library are listed below. Specific
models are selected through the level parameter. Other parameters are specific to that model, and
there is not in general a great deal of commonality of parameter names between the various models.
Only the simple models provided in SPICE3 will be documented. Documentation for the third-party
models is available from the Whiteley Research web site.

The user should see the help system for the most recent list of available models, since the list may
have changed after the manual was printed.

112 CHAPTER 2. WRSPICE INPUT FORMAT

The devmod command can be used to change the model levels of these devices, with the exception
of the MOS device (levels 1–3 and 6) whose level numbers are fixed. Alternatively, the .mosmap keyword
can be used in SPICE input to map the level number of a foreign simulator into the number expected
by WRspice. The .mosmap line, which must be read before the corresponding .model line, is followed
by two integers. The first integer is the level number found in the file, the second is the WRspice level
number appropriate for the model parameter set. Both of these methods avoid the need to copy the
model file and edit the level number.

The table below lists all of the MOS levels recognized in WRspice.

Level Name Description

1 MOS The SPICE3 mos1 (Shichman-Hodges) model
2 MOS The SPICE3 mos2 model described in [1]
3 MOS The SPICE3 mos3 semi-empirical model (see[1])
4 BSIM1 The SPICE3 bsim1 empirical model described in [2]
5 BSIM2 The SPICE3 bsimw model, successor to bsim1
6 MOS The SPICE3 mos6 model
7, 49 BSIM3.2.0 U.C. Berkeley bsim-3.2.0 model
8, 47 BSIM3.2.4 U.C. Berkeley bsim-3.2.4 model
9, 53 BSIM3.3.0 U.C. Berkeley bsim-3.3.0 model
12 BSIM4.2.1 U.C. Berkeley bsim-4.2.1 model
13 BSIM4.3.0 U.C. Berkeley bsim-4.3.0 model
14 BSIM4.4.0 U.C. Berkeley bsim-4.4.0 model
15, 54 BSIM4.6.5 U.C. Berkeley bsim-4.6.5 model
16, 56 BSIM4.7.0 U.C. Berkeley bsim-4.7.0 model
20 BSIMSOI-3.0 U.C. Berkeley bsimsoi-3.0 SOI model
21 BSIMSOI-3.2 U.C. Berkeley bsimsoi-3.2 SOI model
22, 57 BSIMSOI-4.0 U.C. Berkeley bsimsoi-4.0 SOI model
23, 70 BSIMSOI-4.3 U.C. Berkeley bsimsoi-4.3 SOI model
24, 71 BSIMSOI-4.4 U.C. Berkeley bsimsoi-4.4 SOI model
25, 55 EKV-2.6 EPFL (Switzerland) MOS model release 2.6
30 HISIM-1.1.0 Hiroshima University hisim-1.1.0 model
31, 64 HISIM-1.2.0 Hiroshima University hisim-1.2.0 model
33 Soi3 Southampton Thermal Analogue (STAG-2.6) SOI model
36, 58 UFSOI-7.5 U. Florida SOI model release 7.5

Notes:

BSIM models
The home page for the Berkeley BSIM models is http://www-device.eecs.berkeley.edu/ bsim3.
The home page for the Berkeley BSIMSOI models is http://www-device.eecs.berkeley.edu/ bsimsoi.

In WRspice release 3.2.5, MOS level 54 was changed to point to the BSIM-4.6.5 model, which
replaced the BSIM-4.6.1 model. In earlier releases, level 54 pointed to BSIM-4.3.0. Going forward,
level 54 will point to the “latest and greatest” BSIM4 model available.

EKV-2.6
The level EKV-2.6 model installation has not been validated by EPFL, and by agreement until
such validation is performed there is no claim that this is THE EKV model. The EKV home page
is http://legwww.epfl.ch/ekv.

2.16. SEMICONDUCTOR DEVICES 113

STAG
The STAG (Southampton Thermal Analogue Model) does not appear to be available from or
supported by the author anymore. This model will likely be removed in a future release.

HiSIM
The HiSIM model source code is no longer generally available, and is behind a Comapct Modeling
Council firewall. It is unlikely that newer HiSIM models will be added unless there is a specific
customer request.

UFSOI-7.5
The home page for the U. Florida modes is http://www.soi.tec.ufl.edu.

Manuals for the BSIM3/4 and third-party MOS models are available on the Whiteley Research web
site.

If you need a specific device model, please send a note to Whiteley Research. It is possible that the
model can be added.

2.16.10.5 HSPICE MOS Level 49 Compatibility in WRspice

In WRspice, level 49 is equivalent to level 7, which is the BSIM3v3.2 model from Berkeley. However,
there are differences in the parameter sets between this model and the level 49 model of HSPICE, which
is based on BSIM3 and customized for HSPICE. In particular, the HSPICE extensions are not supported
in WRspice.

This document lists the parameters that are accepted in HSPICE level 49 model parameter sets that
are not supported in the Berkeley model, or have different interpretation. The parameters are listed in
alphabetical order, by category. This list is possibly incomplete.

This list also applies to the level 8 (BSIM3v3.2.4) model in WRspice. In WRspice release 2.2.50 and
earlier, level 49 was mapped to level 8. However, the VERSION parameter in level 8 must be “3.2.4” if
given, which is not generally true in imported files. The level 7 model handles earlier versions, notably
3.1, without complaint.

2.16.10.5.1 General parameters

BINFLAG

This is not used for WRspice.

SCALM, SCALE
In HSPICE these are the “model scaling factor” and “element scaling factor”. There are no WRspice

equivalents.

TREF

Temperature at which parameters are extracted. This is taken as an alias for the BSIM3 TNOM

parameter in WRspice.

NQSMOD

This is accepted by WRspice as an extension to BSIM3, and serves as the default for devices that
use the model. If also given on the device line, that value will override.

114 CHAPTER 2. WRSPICE INPUT FORMAT

2.16.10.5.2 Length and Width

LREF, WREF
In HSPICE these are “channel length reference” and “channel width reference”. There are no
WRspice equivalents.

XW, XL
In HSPICE these account for masking and etching effects. In release 3.1.5 and later, the XW and XL

parameters are handled by the BSIM3 bulk-mos models (levels 7, 8, 9, 47, 49, and 53) implementing
the formula below. With earlier releases, one must modify WINT and LINT.

WINTnew = WINTold - XW/2
LINTnew = LINTold - XL/2

2.16.10.5.3 MOS Diode Model Parameters

ACM

In HSPICE this selects the area calculation method. WRspice uses only one model for the bulk-to-
source and bulk-to-drain diodes. It corresponds to the HSPICE equivalent of ACM=0. Do not use
this parameter for WRspice. ACM is not needed if AS, AD, PS, and PD are specified explicitly.

CJGATE

In HSPICE this is the zero-bias gate-edge sidewall bulk junction capacitance used with ACM=3
only. There is no WRspice equivalent.

HDIF, LDIF
In HSPICE this is the “length of heavily doped diffusion” and “length of lightly doped diffusion”.
They are used with the HSPICE ACM=2 MOS diode models, and there are no WRspice equivalents.
HDIF and LDIF are not needed if AS, AD, PS, and PD are specified explicitly.

N

In HSPICE this is the “emission coefficient”, and is taken as an alias for the BSIM3 NJ parameter.

RDC

In HSPICE this is additional drain resistance due to contact resistance. If RD is specified, use

RDnew = RDold + RDC

If RSH is specified, then RDC should be added to RD=NRD*RSH. Since NRD is a device parameter and
not a model parameter, a typical NRD value must be used.

RSC

In HSPICE this is additional source resistance due to contact resistance. If RS is specified, use

RSnew = RSold + RSC

If RSH is specified, then RSC should be added to RS=NRS*RSH. Since NRS is a device parameter and
not a model parameter, a typical NRS value must be used.

WMLT, LMLT
In HSPICE these are “length of heavily doped diffusion” and “length of lightly doped diffusion”
used in the ACM=1–3 models. There are no WRspice equivalents. WMLT and LMLT are not needed if
AS, AD PS, and PD are specified explicitly.

2.17. SUPERCONDUCTOR DEVICES 115

2.16.10.5.4 Capacitance Parameters

CAPOP

Do not use CAPOP for WRspice. CAPMOD is included in the BSIM3 model. CAPOP is HSPICE specific,
and not included in the BSIM3 parameter set. The default BSIM3 capacitance model is CAPMOD=3.

CJM

This is taken as an alias for the BSIM3 CJ parameter in WRspice.

MJ0

This is taken as an alias for the BSIM3 MJ parameter in WRspice.

PJ

This is taken as an alias for the BSIM3 PB parameter in WRspice.

CTA, CTP
In HSPICE these are the “junction capacitance CJ temp. coeff.” and “junction sidewall capaci-
tance CJSW temp. coeff”, used with TLEVC=1. There are no WRspice equivalents.

PTA, PTP
In HSPICE these are the “junction potential PB temp. coeff.” and “fermi potential PHI temp.
coeff”, used with TLEVC=1 or 2. There are no WRspice equivalents.

PHP

This is taken as an alias for the BSIM3 PBSW parameter in WRspice

TLEV, TLEVC
In HSPICE this is the “temperature equation level selector” and “temperature equation level
selector for junction capacitances and potentials”. Do not use these parameters for WRspice.

2.16.10.5.5 Impact Ionization

ALPHA, LALPHA, WALPHA, VCR, LVCR, WVCR, and IIRAT

These are impact ionization parameters in HSPICE. There are no WRspice equivalents. BSIM3
has its own impact ionization model which is instead used in most cases.

2.16.10.5.6 V3.2 parameters Level 49 parameter sets in WRspice may include BSIM3v3.2 param-
eters, though historically HSPICE level 49 was based on BSIM3v3.1. The following parameters are new
for v3.2:

ALPHA1, ACDE, MOIN, NOFF, VOFFCV
All except ALPHA1 are used in a new capacitance model (CAPMOD=3). ALPHA1 modifies the substrate
current equation as follows:

Isub ~ (ALPHA0 + ALPHA1*Leff) / Leff

2.17 Superconductor Devices

2.17.1 Josephson Junctions

General Form:
bname n+ n- [np] [modname] [parameters ...]

116 CHAPTER 2. WRSPICE INPUT FORMAT

Parameter Name Description

area=val Scale factor that multiplies all currents and other values, effectively modi-
fying the junction area.

ic=vj ,phi The initial junction voltage and phase (initial condition) for transient anal-
ysis.

vj=vj The initial junction voltage (initial condition) for transient analysis.
phi=phi The initial junction phase (initial condition) for transient analysis.
control=name Controlling voltage source or inductor name.

Examples:
b1 1 0 10 jj1 area=2

bxx 2 0 type1 control=l3

b2 4 5 ybco phi=1.57

The n+ and n- are the positive and negative element nodes, respectively. These are followed by an
optional phase node. The phase node, if specified, generally should have no other connections in the
circuit, but the voltage of this node gives the phase of the junction in radians. The modname is the
name of the Josephson junction model. If no model is specified, then a default model is used (see the
description of the Josephson model in 2.17.2 for the default values). Other (optional) parameters follow
in any order. The initial phase (in radians) and voltage of the junction can be specified either as a vector
or independently. If not specified, the initial junction voltage and phase are taken to be zero. Transient
analysis of circuits containing Josephson junctions always starts from initial conditions. The junction
area (effectively the number of devices in parallel) can be specified with the area parameter. The control
current source can be specified with the control parameter. The name in the control specification
represents the name of either a voltage source or inductor which appears elsewhere in the circuit. The
control parameter is only needed if critical current modulation is part of the circuit operation, and is
only relevant to Josephson junction model types that support critical current modulation.

When Josephson junctions are present in the circuit, only transient analysis may be performed, and
the transient uic parameter will be set implicitly. The time step is determined by junction phase change
by default, in accordance with the setting of the dphimax option variable. If the variable nojjtp is set,
the truncation error timestep predictor is used as is the case when Josephson junctions are not present.

2.17.2 Josephson Junction Model

Type Name: jj

The Josephson junction model is an extended version of the RSJ model as used by Jewett[11].

The parameters marked with an asterisk in the area column scale with the area parameter given in
the device line.

2.17. SUPERCONDUCTOR DEVICES 117

JJ Model Parameters
name area parameter units default example

icrit ∗ Junction critical current A 1.0e-3 1.5e-3
cap ∗ Junction capacitance F 1.0e-12 5.0e-13
rn ∗ Normal state resistance Ω 1.7 2.0
r0 ∗ Subgap resistance Ω 30 50
vg Gap voltage V 3.0e-3 2.8e-3
delv Gap voltage spread V 1.0e-4 8.0e-5
rtype Quasiparticle branch model - 1 2
cct Critical current model - 1 3
icon Critical current first zero A 1.0e-2 2.5e-2
icfact Ratio of critical to gap currents - π/4 0.7
vshunt Voltage to specify fixed shunt resistance - 0 200uV

The rtype parameter determines the type of quasiparticle branch modeling employed. Legal values
are as follows:

0 The junction is completely unshunted (effectively sets rn and r0 to infinity).
1 Standard piecewise-linear model.
2 Analytic exponentially-derived approximation.
3 Fifth order polynomial expansion model.
4 “Temperature” variation, allow modulation of the gap parameter.

The default is rtype=1. Setting rtype=0 will disable modeling of the quasiparticle current, effectively
setting the RSJ shunt resistance to infinity. Conditions with rtype=1 and 2 are as described by Jewett,
however it is not assumed that the normal resistance projects through the origin. The icfact parameter
can be set to a value lower than the default BCS theoretical value to reflect the behavior of most real
junctions. The quasiparticle resistance is approximated with a fifth order polynomial if rtype=3, which
seems to give good results for the modeling of some NbN junctions (which tend to have gently sloping
quasiparticle curves).

Rtype=4 uses a piecewise-linear quasiparticle characteristic identical to rtype=1, however the gap
voltage and critical current are now proportional to the absolute value of the control current set with
a control=src name entry in the device line. This is to facilitate modeling of temperature changes
or nonequilibrium effects. For control current of 1 (Amp) or greater, the full gap and critical current
are used, otherwise they decrease linearly to zero. If no device control source is specified, the algorithm
reverts to rtype=1. It is expected that a nonlinear transfer function will be implemented with a controlled
source, which will in turn provide the controlling current to the junction in this mode. For example, the
controlling current can be translated from a circuit voltage representing temperature with an external
nonlinear source. The functional dependence is in general a complicated function, but a reasonable
approximation is 1 − (T/Tc)

4. See the examples for an example input file which illustrates rtype=4.

It is currently not possible to use other than the piecewise linear model with temperature variation.
If rtype=4, then legal values for the critical current parameter are cct=0 (no critical current) and cct=1

(fixed critical current). If another value is specified for cct, cct reverts to 0. Thus, magnetic coupling
and quasiparticle injection are not simultaneously available.

In general, the cct variable can take on the following values:

118 CHAPTER 2. WRSPICE INPUT FORMAT

0 No critical current.
1 Fixed critical current.
2 Sin(x)/x modulated supercurrent.
3 Symmetric linear reduction modulation.
4 Asymmetric linear reduction modulation.

The control parameter should be used with devices using cct 2,3, or 4. With cct=2, the first zero
is equal to the value of the model parameter icon. For cct=3, the maximum critical current is at control
current zero, and it reduces linearly to zero at control current = ±icon. Junctions with cct=4 have
maximum critical current at control current = −icon, and linear reduction to zero at control current
= +icon. If cct is specified as 2, 3, or 4, the area parameter, if given, is set to unity. Otherwise, the
model parameters are scaled appropriately by the area before use.

If the vshunt parameter is given, every device instance will be shunted by a linear resistor. This is
in addition to the resistance of the quasiparticle branch. The value of this resistance is

Rshunt = Vshunt/Ic

where Vshunt is the value given for the model parameter, and Ic is the (maximum) critical current of the
Josephson junction device. This parameter is useful for simulating SFQ circuits, as it can automatically
provide the appropriate shunt resistance, which would otherwise be a separate resistor.

Chapter 3

The WRspice User Interface

3.1 Starting WRspice

The WRspice simulator is invoked by typing

wrspice options ... input files ...

All arguments are optional. There are several options which are recognized specifically by WRspice.
These options are case insensitive — the option letters can be given in upper or lower case. In addition,
there are a few additional options recognized by the graphics system.

The command line options are flagged with the ‘-’ character, but this can be changed by setting the
SPICE OPTCHAR environment variable. Below, the use of the ‘-’ character is assumed for simplicity.

Graphical WRspice requires an X server under UNIX. When using X, the DISPLAY environment
variable should already be set, but if one wants to display graphics on a different machine than the one
running WRspice, DISPLAY should be of the form machine:0. For example, if one wants the display to
go to the workstation named “crab”, for the C-shell one would enter “setenv DISPLAY crab:0” at the
shell prompt, or equivalently for the Bourne shell one would enter “DISPLAY=crab; export DISPLAY”
or the more compact form “export DISPLAY=crab” if supported. Note that this can also be supplied
using the -d option.

Further arguments are taken to be WRspice input files, which are read and saved in memory. If batch
mode is requested (-b option) then they are run immediately. WRspice will accept SPICE2 input files,
and output ASCII plots, Fourier analyses, and node printouts as specified in .plot, .four, and .print

lines. If an out parameter is given on a .width line, the effect is the same as “set width = ...”.
Since WRspice ASCII plots do not use multiple ranges, however, if vectors together on a .plot card
have different ranges they will not provide as much information as they would in SPICE2. The output
of WRspice is also much less verbose than SPICE2, in that the only data printed is that requested by
the above lines.

The following option forms are accepted by WRspice. The option letter can be lower or upper case.

-b

Run in batch mode. WRspice will read the standard input or the specified input files and do the
simulation. Note that if the standard input is not a terminal, WRspice will default to batch mode,

119

120 CHAPTER 3. THE WRSPICE USER INTERFACE

unless the -i option is given. In batch mode, WRspice generates output files for operating range
and Monte Carlo analysis, otherwise if the -r option is used (-r filename) WRspice generates a
plot data file, or generates an ASCII plot or print on standard output, as per .plot/.print lines,
if no filename was specified. See the description of the write command (4.4.9) for information
about the file formats available and how they can be specified.

-c flags
This option sets the case sensitivity of various name classes in WRspice. These classes are:

Function names.
User-defined function names.
Vector names.
.PARAM names.
Codeblock names.
Node and device names.

The flags is a word consisting of letters, each letter corresponds to a class from the list above. If
lower-case, the class will be case-sensitive. If upper-case, the class will be case-insensitive.

The letters are f, u, v, p, c, and n corresponding to the classes listed above. By default, all
identifiers are case-insensitive, which corresponds to the string “FUVPCN”. Letters can appear in
any order, and unrecognized characters are ignored. Not all letters need be included, only those
seen will be used.

This word should follow -c or -C in the command line options, separated by space.

Case sensitivity can also be set from a startup file using the setcase command. This command
takes as an argument a string as described above. The command line setting occurs after setting
from a startup file.

-d [host]:server[.screen]
This option is applicable when running under X windows, and specifies the name of the display to
use. The host is the hostname of the physical display, server specifies the display server number,
and screen specifies the screen number. Either or both of the host and screen elements to the
display specification can be omitted. If host is omitted, the local display is assumed. If screen is
omitted, screen 0 is assumed (and the period is unnecessary). The colon and (display) server are
necessary in all cases. This option can also be given as -display and --display.

-dnone

This is a special form of the -d option that when given will suppress all use of graphics. This can
be desirable when running WRspice remotely over a slow terminal connection. This option will
also work under Windows, if for some reason it is necessary to run WRspice in text-only mode.

-i

Run in interactive (as opposed to batch) mode. This is useful if the standard input is not a terminal
but interactive mode is desired. Command completion is not available unless the standard input
is a terminal, however. Interactive mode is the default when the standard input is a terminal.

-j

Run in JSPICE3 compatibility mode. This applies when running interactively, and causes suppres-
sion of the Tool Control window. Also, error messages are printed in the console window, rather
than in a separate pop-up window (the noerrwin variable is set on startup).

3.1. STARTING WRSPICE 121

-l license server [:port]
This option provides the host name of a machine running the license server, and optionally the
port number in use by the server. The port number is required if for some reason the license server
is using a non-default port.

Below is the logic hierarchy for setting the license server host, each method will override those listed
lower. See the documentation for the xtlserv (license server) program for more information.

-l serverhost[:port]
XTLSERVER in environment
license.host file
xtlserver in /etc/hosts

name of local machine

-m

Skip loading the loadable device modules (see 3.18) from the devices directory on program startup.

-n

Don’t try to execute the user’s startup files (.wrspiceinit files) upon startup. Normally WRspice

tries to find these files in the user’s home directory and the current directory, and will execute
them in that order. In Windows, the “home directory” can be specified by setting the HOME
environment variable. The global file wrspiceinit in the system startup directory is sourced in
any case.

-o outfile
The argument outfile specifies a file to be used for output, rather than the standard output (ter-
minal).

-p

Open WRspice in a mode which takes input from a UNIX port, used to establish interprocess
communications as a slave process.

-q

Disable command completion, which saves memory and may run slightly faster. This prevents
initial loading of the command completion data structures. If the variable nocc is set and unset,
command completion will be turned on, however most internal keywords will not be present in the
database.

-r filename
Use filename as the default file into which the results of the simulation are saved with the write
command, and for data output in batch mode. This can be overridden with the rawfile variable.
See the description of the write command (4.4.9) for information about the file formats available,
and how they can be specified.

-s

Run in server mode. This is like batch mode, except that a temporary rawfile is used and then
written to the standard output, preceded by a line with a single ‘@’, after the simulation is done.
This mode is used by the /WRspice daemon wrspiced. In server mode, WRspice reads input from
the standard input, and generates output, in rawfile or margin analysis file format, on the standard
output. The -r and -b options are ignored.

-t termname
This specifies the name of the terminal, as known in a termcap or terminfo database. The terminal
name is only needed in interactive mode when line editing is enabled, and is generally obtained
from the TERM environment variable. Occasionally, this option is useful in overriding bad terminal

122 CHAPTER 3. THE WRSPICE USER INTERFACE

info specifications allowing line editing to work, such as by giving a value of “vt220” when running
in an xterm.

-x

This option, if given, will cause WRspice to provide its own window for text input, if WRspice is in
interactive mode and graphics is available. Under the X window system, the “xterm” command is
used to obtain the text window.

The UNIX/Linux graphical subsystem will accept the following options. It is unlikely that the user
will ever need these.

--class classname
This option specifies the application class name under which resources for the application should
be found.

--name appname
This option specifies the name under which resources for the application should be found. This op-
tion is useful in shell aliases to distinguish between invocations of an application, without resorting
to creating links to alter the executable file name. This option can also be given as “-name”.

--sync

This option indicates that requests to the X server should be sent synchronously, instead of asyn-
chronously. Since Xlib normally buffers requests to the server, errors do not necessarily get reported
immediately after they occur. This option turns off the buffering so that the application can be
debugged. It should never be used with a working program. This option can also be given as
“-synchronous”.

--no-xshm

If set, the X server will not use shared memory.

3.2 Environment Variables

Environment variables are keyword/value pairs that are made available to an application by the command
shell or operating system. The value of an environment variable is a text string, which may be empty.
Environment variables can be set by the user to control various defaults in WRspice.

3.2.1 Unix/Linux

Environment variables are maintained by the user’s command shell. It is often convenient to set envi-
ronment variables in a shell startup file such as .cshrc or .login for the C-shell or .profile for the
Bourne shell. These files reside in the user’s home directory. See the manual page for your shell for more
information.

For the C-shell, the command that sets an environment variable is

setenv variable name [value]

For example,

3.2. ENVIRONMENT VARIABLES 123

setenv XT DUMMY "hello world!"

Note that if the value contains white space, it should be quoted. Note also that it is not necessary to
have a value, in which case the variable acts as a boolean (set or not set).

In the C-shell, one can use setenv without arguments, or printenv, to list all of the environment
variables currently set.

For a modern Bourne-type shell, such as bash, the corresponding command is

export variable name[=value]

In this type of shell one can list the variables currently set by giving the shell set command with no
arguments.

3.2.2 Microsoft Windows

Under Windows, environment variables can be set in a DOS box with the “set” command before
starting the program from the command line, or in the AUTOEXEC.BAT file, or from the System entry
in the Control Panel. Only the latter two methods work if the programs are started from an icon. If
using a Cygwin bash-box, environment variables can be set in the startup file as under Unix.

3.2.3 WRspice Environment Variables

The following environment variables are used by all XicTools programs.

XT AUTH MODE
By default, Unix/Linux versions of Xic and WRspice use authorization provided by an external
license server, possibly hosted on a different machine. On the other hand, the Windows versions
and XicII/Xiv use built-in authorization. Both the external license server and the programs not
using the license server make use of a file named “LICENSE” provided by Whiteley Research, Inc.,
which provides authorization to run on the host computer.

It is possible to run Xic and WRspice without a license server, and to run XicII/Xiv from a li-
cense server. The status is set with the environment variable XT AUTH MODE. This variable has
meaning if set to one of the keywords “Server” or “Local”

If set to “Server”, XicII and Xiv will validate through a license server the same way as Xic and
WRspice normally do. If set to “Local”, Xic and WRspice will be self-validating the way XicII

normally is.

Xic and/or WRspice users on a single licensed workstation may prefer to set the environment
variable in their shell startup file and not use the external license server.

When the programs look for the LICENSE file in “Local” mode, if the file is not found in the
startup or license directories, the programs will look in the home and current directories, in that
order, unless XT LICENSE PATH is also set.

XT LICENSE PATH
When using local validation (i.e., not using the license server) XT LICENSE PATH can be set to
the full path to the license file. Only this file will be used – the regular search is suppressed.

124 CHAPTER 3. THE WRSPICE USER INTERFACE

XTLSERVER
This provides the host name of the host running the license server needed to validate the applica-
tion. It is in a format understandable to the local name server. The host name can optionally be
suffixed by “:port”, where port is the port number in use by the server. There should be no space
around the colon when using this form.

XT PREFIX
All of the XicTools programs respond to the XT PREFIX environment variable. When the tools are
installed in a non-standard location, i.e., other than /usr/local, this can be set to the directory
prefix which effectively replaces “/usr/local”, and the programs will be able to access the instal-
lation library files without further directives. This should not be needed under Windows, as the
Registry provides the default paths.

XT USE GTK THEMES
This applies to releases that statically link the GTK-1.2 libraries into the program (Linux2 and
OS X distributions only). There is a potential portability issue with the GTK theme engine which
is dynamically installed on some systems. Unless the engine supplied on the user’s system is
compatible with the libraries linked into the program, dynamic runtime linking will fail, and the
program may exit. To avoid this problem, the programs use a default theme known to work (see
README under default theme in the startup directory). This can be disabled, i.e., the system
themes used, by setting the environment variable XT USE GTK THEMES.

XTNETDEBUG
If the variable XTNETDEBUG is defined, Xic and WRspice will echo interprocess messages sent and
received to the console. In server mode, Xic will not go into the background, but will remain in
the foreground, printing status messages while servicing requests.

XT SYSTEM MALLOC
The Unix/Linux program releases have built-in custom memory management. The built-in memory
manager allows programs to use all available system memory, which is not generally true with the
standard memory manager supplied with the operating system. The custom memory manager
provides memory use statistics and debgging modes that are otherwise unavailable.

If the program is started with the XT SYSTEM MALLOC environment variable set, then the pro-
gram will use the standard memory manager provided by the operating system.

There are several environment variables which can be used to alter some of the WRspice defaults.
On startup, WRspice checks for the following variables in the environment, and alters internal defaults
accordingly. The defaults can be modified when the program is built, the defaults listed below are those
assigned in the distribution.

HOME
This is used only in the Microsoft Windows version, and can be set to a full directory path which
will be taken as the user’s home directory.

DISPLAY
This variable defines the X window system display that WRspice will use, but is ignored if the -d

option is used on the WRspice command line. The display must be specified for graphics to be
enabled in WRspice.

EDITOR
If defined to the invoking string for a text editor, that editor will be used in the edit command.
This is superseded by the SPICE EDITOR variable, if set.

3.2. ENVIRONMENT VARIABLES 125

SPICE EDITOR
The text editor called by the edit command can be set with this variable. The variable is defined
to the command string one would type to invoke the editor. This will supersede the EDITOR
variable, if set, but which would otherwise have the same effect. If no editor is specified in the
environment, or with the editor shell variable, which supersedes the environment variables, a
default internal editor is used. The default internal editor can also be specified by setting
SPICE EDITOR to nothing, “default”, or “xeditor”.

TMPDIR
This specifies a directory to use for temporary files, and is superseded by SPICE TMP DIR, if
defined. The default location if not specified is /tmp.

SPICE TMP DIR
When WRspice creates a temporary file, it will look for a directory named by the
SPICE TMP DIR environment variable, and if not found the directory named in the TMPDIR
variable, and if still not found the file will be created in /tmp.

SPICE EXEC DIR
This variable can be used to define the directory containing the XicTools binaries, used by the
aspice command and the wrspiced daemon. If not set, the default is
“/usr/local/share/xictools/bin”, or, if XT PREFIX is set, its value replaces “/usr/local”.

SPICE PATH
This can be used to set the full path to the WRspice executable, for the aspice command and the
wrspiced daemon. If not set, the default is “/usr/local/share/xictools/bin/wrspice”, or, if
XT PREFIX is set, its value replaces “/usr/local”. The SPICE EXEC DIR variable can also be
used for this purpose, unless the wrspice executable has been renamed. The spicepath shell
variable, if set, will override the path set in the environment.

SPICE LIB DIR
This variable can be used to change the default location where WRspice looks for system startup
files. If not set, the internal default is “/usr/local/share/xictools/wrspice/startup”, or, if
XT PREFIX is set, its value replaces “/usr/local”.

SPICE INP PATH
This can be set to a list of directories to search for input files and scripts. If not set, the internal
default is “(. /usr/local/share/xictools/wrspice/scripts)”, or, if XT PREFIX is set,
its value replaces “/usr/local”.

SPICE HLP PATH
This can be set to a list of directories to search for help database files. If not set, the internal
default is “(/usr/local/share/xictools/wrspice/help)”, or, if XT PREFIX is set, its value
replaces “/usr/local”. This is superseded by the helppath shell variable, if set.

SPICE NEWS FILE
This variable can be set to the full path to a text file which is printed when WRspice starts. If
not set, the file /usr/local/share/xictools/wrspice/startup/news will be printed, if it exists
(if XT PREFIX is set, its value replaces “/usr/local”).

SPICE BUGADDR
This variable can be set to an internet mail address to use in the bug reporting command. If not
set, the built in default is the Whiteley Research technical support address.

SPICE OPTCHAR
This variable can be defined to a character that will be used to flag options on the WRspice

command line. If not defined, the option character is “−”.

126 CHAPTER 3. THE WRSPICE USER INTERFACE

SPICE ASCIIRAWFILE
If this variable is defined to “0” (zero), or to a word starting with ‘f’ or ‘F’ such as “False”, or
‘n’ or ‘N’ such as “No”, WRspice will create binary plot-data files (rawfiles). If not set or set to
something else, WRspice will create the default ASCII-format rawfiles. The filetype shell variable
can also be used to set the mode, which will supersede the environment variable. The rawfiles are
normally created with the write command.

SPICE HOST
This variable can be used to set the host name to use for remote SPICE runs. The host name
can optionally be suffixed by a colon followed by the port number to use for communication with
the wrspiced daemon. If not given, the port is obtained from the operating system for
“wrspice/tcp”, or 6114 (the IANA registered port number for this service) if this is not defined.
There is no default for this variable. Hosts can also be specified with the rhost command, and
given with the rhost shell variable.

SPICE DAEMONLOG
This variable is used by the wrspiced daemon program to set an alternate path for the log file.
The default path is /tmp/wrspiced.log.

3.3 Sparse Matrix Package

The core of a SPICE simulator is the set of functions that set up, factor, and solve the circuit equations.
The circuit equations form a matrix, whose elements, for most circuits, are mostly zero. This type of
matrix is deemed “sparse”. The speed with which the matrix can be filled, factored, and solved has a
major impact on simulation speed.

Historically, WRspice has used a derivative of the venerable Sparse package written by Ken Kundert
at Berkeley for sparse matrix processing. The package has been modified for improved performance,
specifically by sorting the matrix elements into an order which maximizes memory locality and minimizes
page-swapping and cache misses. The original C-language package was also translated into a set of C++
classes, improving maintainability and easing the integration of enhancements.

Although the Sparse package provides solid performance, newer algorithms have become available in
recent years which, in some or most cases, provide better performance. The KLU package, written by
Tim Davis at the University of Florida, is one such example. This package is distributed under a GNU
license, which prevents direct incorporation into a proprietary commercial application such as WRspice,
however commercial applications may use the package as a shared library.

WRspice distributions provide KLU in the form of a “plug-in”. A plug-in is a shared library that is
loaded directly by the application at run-time, rather than relying on the system loader. By using the
plug-in, the application can still run properly whether or not the plug-in is available. If loading was
performed by the system as for a normal shared library, WRspice would not run unless the plug-in is
accessible.

The KLU plug-in is installed in the startup directory in the WRspice installation area. Thus, for
normal installations, it should always be accessible. By default, WRspice will load and use KLU for
spares matrix processing, overriding the Sparse package. However, it is possible to direct WRspice to use
Sparse rather than KLU if desired.

For large post-extraction mixed-mode CMOS circuits used for benchmarking, the KLU package
provides a 2-3 times improvement in simulation speed over Sparse. These circuits contain hundreds of
transistors, and thousands of resistors and capacitors. For less complex circuits, the speed advantage

3.4. INITIALIZATION FILES 127

may be smaller, and in some cases KLU may actually be slower. KLU was observed to be slower in
rather simple circuits containing Josephson junctions. Users are encouraged to use the rusage command
and determine which package provides the best performance on their circuits.

The following option variables control the sparse matrix handling. The first two can be set from
the General page of the Sim Defs tool. The noadjoint variable can be set from the Devices page
of the Sim Defs tool. The Sim Defs tool is found in the Tools menu of the WRspice Tool Control
Window. The variables can also be set with the set command, or in a .options line in SPICE input.

noklu

When this boolean variable is set, KLU will not be used for sparse matrix calculations. Otherwise,
if the KLU plug-in is available, KLU will be used by default. The KLU plug-in is provided with
all WRspice distributions, and is installed in the startup directory.

nomatsort

When using Sparse (i.e., KLU is unavailable or disabled), this boolean variable when set will
prevent using element sorting to improve speed. This corresponds to the legacy WRspice sparse
code. It may be interesting for comparison purposes, but setting this variable will slow simulation
of most circuits. This variable has no effect if KLU is being used.

noadjoint

Most of the BSIM device models in WRspice have added code that builds an adjoint matrix which
is used to accurately compute device currents. The computed currents are not used in the device
models, but are available as simulation outputs. This has a small performance overhead which can
be eliminated by setting this boolean variable. The cost is that it may not be possible to obtain
device currents during the simulation, using the @device[param] “pseudo-vector”. This applies
whether KLU or Sparse is used for matrix operations.

3.4 Initialization Files

WRspice will attempt to source startup files used for initialization when the program is started. First, a
file named “wrspiceinit” is searched for in the system startup directory, and if found is sourced into
WRspice. The system startup directory has a default location built into the program
(/usr/local/share/xictools/wrspice/startup, or if XT PREFIX is set in the environment, its value
replaces “/usr/local”), but this can be changed by setting the SPICE LIB DIR environment variable to
another location.

license.host file
When using a license server on a remote machine, it is necessary to provide the name of this
machine or WRspice can not run. One way to do this is to create a license.host file in the
startup directory, e.g. /usr/local/share/xictools/wrspice/startup. The license.host file
consists of a single line of text, giving the host name of the license server machine. The host name
can optionally be suffixed with “:port”, where port is the port number in use by the license server.
This is required if for some reason the license server is not running on the default port.

.wrspiceinit file
Files named “.wrspiceinit” are searched for in the user’s home directory, and the current direc-
tory, and are sourced, if found, in that order. If running on Microsoft Windows which does not
support the notion of a home directory, WRspice will look in the environment for a variable named
“HOME”, and its value will be taken as the path to the ”home directory”. If not set, the search is
skipped.

128 CHAPTER 3. THE WRSPICE USER INTERFACE

These files have identical format, and contain ordinary script commands, which can be used to
set the default behavior of WRspice. The first line is ignored, but all remaining lines are taken as
script commands. The special directive tbsetup, which can only appear in these files, provides
the setup information for the graphical interface. Unlike ordinary input files, it is not necessary to
enclose the commands in .control or .exec blocks in the startup files.

X Resources
When using the X-window system, the X resource-passing mechanism can be used to set the
default colors used in plots. The resource mechanism is otherwise ignored in the current version
of WRspice. The base names for the color resources are “color0” through “color19”, with the
corresponding class names capitalized. Thus, one way to define alternative plotting colors is to
create a file named “Wrspice” in the user’s home directory, which contains lines like

*color2: red

for each new color definition. The color name should be known to the X window system, i.e., be
listed in the rgb.txt file in the X-windows system library.

The same definitions could be placed in a .wrspiceinit file with lines like “set color2 = red”.

.wrpasswd file
On startup, WRspice will read the .wrpasswd file if found in the user’s home directory. This file
contains the encrypted password to the program distribution repository, and is created in WRspice

with the passwd command. This file can also be generated from Xic. If present and the password is
active, WRspice will check for the availability of updates on startup, and the wrupdate command
will be enabled.

3.4.1 The tbsetup Command

This command can appear in the startup files only. It is inserted into or updated in the .wrspiceinit

file in the user’s home directory in response to the update command, or from pressing the Update
Tools button in the File menu of the Tool Control window. It is not likely that the user will need to
work with tbsetup directly, though it can be used to customize the Tools menu in the Tool Control
window.

The command string takes the following form:

tbsetup [old] [vert] [toolbar on|off x y] [name1 on|off x y] [name2 ...

The old and vert keywords are ignored. They exist for backward compatibility.

By invoking the update command from the prompt line or pressing the Update Tools button in
the File menu of the Tool Control window, a .wrspiceinit file is created in the user’s home directory
if necessary, and the tbsetup command will be added or updated. This will save the current state of
the windows from the Tools menu, which will be recreated when the program is started the next time.

If no tbsetup command is found on program startup, a default configuration is used (all tools initially
invisible).

For each argument block in the tbsetup call, the first token gives the tool name, with the “toolbar”
entry indicating the Tool Control window itself. For other than the Tool Control window, which is always
shown, the on and off keywords specify whether the tools are shown at startup. The two numbers that
follow give the position of the upper left corner of the tool on the screen (the screen origin is the upper
left corner, coordinates are in pixels). For other than the first (Tool Control window) entry, the blocks

3.5. THE TOOL CONTROL WINDOW 129

can be rearranged or deleted. The Tools menu will show only the tools listed, in the order given. Thus,
the Tools menu can be customized.

To generate an initial custom configuration, simply start WRspice on a system that supports graphics,
and the Tool Control window will appear somewhere on-screen. After opening some of the tools from
the Tools menu and arranging them as necessary and/or moving the Tool Control window, the Update
Tools button in the File menu can be pressed. A .wrspiceinit file will be created, or an existing
file updated, in the user’s home directory. Alternatively, the update command can be given from the
command line. Hand editing of the .wrspiceinit file may be used to remove buttons or change the
button order in the Tools menu. Once edited, only the tools present will be updated.

3.5 The Tool Control Window

When the DISPLAY variable is found in the environment upon program startup, WRspice assumes that a
graphical (X-window) server is available, and will enable its graphical components. If this initialization
fails, WRspice will terminate. If the DISPLAY variable is not set, and the -d option is not used on the
command line to specify the display, or the -dnone command line option is given, then WRspice will
run in text-only mode. In this mode, the core functionality is available, but not the graphical niceties
such as plotting (other than the infamous crude line-printer plots of yore). Under Microsoft Windows,
graphics is (of course) always available.

When a graphical interface is available, WRspice by default provides a small “Tool Control” window
which provides menus for controlling WRspice, and a display containing a tabulation of memory statis-
tics. The menus contain buttons which bring up graphical screens, from which much most of WRspice

can be controlled in a (perhaps) more user-friendly fashion. The locations of the pop-ups and their
active/inactive status at program startup can be preset by the user.

When running WRspice through the Xic program, by default the Tool Control window will appear
when connection to WRspice has been established. The Xic variable NoSpiceTools can be set, before the
connection is established, to prevent the Tool Control window from appearing.

The text area lists the following quantities, though some may not be listed if the operating system
does not provide this information. The listing is updated every few seconds. The first line of text shows
the current running status of WRspice: idle, running, or stopped. Also shown on this line is the elapsed
wall-clock time from the last status change. The time format is hours:minutes:seconds. The seconds
entry has two decimal places (resolution is .01 second). The hours field is not included if zero. The user
and system lines are similar, but display the total user cpu time used by the process, and the total
system cpu time, respectively. The user time generally includes input/output processing time, where
the system time is pure cpu usage. The data size entry displays the total storage in Kb used by the
program. This size is limited to the program limit, which is given in the following line. This limit
can be changed with the maxdata variable. The final system limit line displays the maximum memory
available from the system for the process.

WRspice supports the xdnd and Motif drag and drop protocols. One is able to drag files from many
file manager programs into the Tool Control window of WRspice or the main window of Xic, and that
file will be loaded into the program. The File Selection and Files Listing pop-ups participate in the
protocols as sources and receivers. The text editor and mail pop-ups are drag receivers.

The file must be a standard file on the same machine. If it is from a tar file, or on a different
machine, first drag it to the desktop or to a directory, then into WRspice. (Note: The GNOME gmc file
manager allows one to view the contents of tar files, etc. as a “virtual file system”. Window Maker and
Enlightenment window managers, at least, are drag/drop aware.)

130 CHAPTER 3. THE WRSPICE USER INTERFACE

In the upper left of the Tool Control window is the WR button, which contains the Whiteley Research
corporate logo. Pressing this button brings up a mail client (see 3.10), pre-loaded with the the address
of the Whiteley Research support staff. The text field containing the address, as well as the subject,
can be changed. This can be used to send questions and bug reports to Whiteley Research, or to send
messages or data files to colleagues.

To the right of the WR button are the Run (green arrow) and Stop (red X) buttons. Pressing
the Run button is equivalent to giving the run command on the command line, without arguments.
Pressing the Stop button issues an interrupt signal that will pause a simulation in progress, the same
as if the user typed Ctrl-C in the console window.

To the right of the buttons is a menu bar with four entries: File, Edit, Tools, and Help. Pressing
the mouse button 1 on these entries brings up a drop-down menu containing various commands.

The File menu contains commands for manipulating disk files.

Open
Bring up a file manager panel. This panel allows files and directories to be created, deleted, and
renamed, or read into WRspice. The file manager is described in 3.8.

Source
This button creates a dialog, soliciting a file to input into WRspice, as with the source command.
When the dialog is active, the Tool Control text window is active as a drag receiver, so that file
names can be dragged and dropped from compatible windows (such as the file manager), and the
file name will be loaded into the dialog.

Load
This button is similar in operation to the Source button, however the file is expected to be a
rawfile, which is the native plot-file format, or a Common Simulation Data Format (CSDF) file.
Like the Source dialog, the Load dialog supports drag and drop protocols through the text area
of the Tool Control window. The file is read and data are made available for analysis, similar to
the load command.

Update Tools
The Update Tools button will save the current tool configuration, and the next time WRspice is
started, the same tools will be available, in the same locations on-screen. The tools are available
in the Tools menu to be described.

Initialization of the graphical interface is directed from the system init file wrspiceinit found in the
startup directory, or more appropriately from the user’s startup files (.wrspiceinit files) as found
in the current or user’s home directory. Only the file in the home directory can be automatically
updated from within WRspice. A special command tbsetup, which is only recognized in these
files, performs the initialization. The tbsetup function takes a long, messy command line, however
fortunately the user has an easy way to automatically add this line, using the the Update Tools
command. This action is also available from the command line update command.

The Update Tools and update commands will create or update a .wrspiceinit file in the user’s
home directory. If the home directory can’t be determined, the current directory will be used.

Update WRspice
The Update WRspice button will initiate a dialog on the command line to download a pro-
gram update distribution file, and possibly install it over the present installation. Download-
ing/installation is only possible if a newer distribution exists on the Whiteley Research web site,
and only if a current .wrpasswd file exists in the user’s home directory, through use of the passwd
command.

3.5. THE TOOL CONTROL WINDOW 131

This button calls the wrupdate command (without arguments). The command-line wrupdate
command provides a little more flexibility, such as the ability to download releases for other than
the current “operating system” name. In either case, one can install the new release and continue
running the present program, but subsequently starting WRspice will invoke the new version. The
present executable is still available as “wrspice.old”.

The computer must have http access to the internet for successful use of this functionality.

Quit
The Quit button will terminate the WRspice session, after confirmation if there is unsaved work.
This can also be accomplished with the quit or exit command line functions.

The Edit menu contains commands used to modify input files.

Text Editor
This button brings up a text editor, similar to the edit command. The default text editor is
described in 3.9, but the user can specify a different editor with the EDITOR or SPICE EDITOR
environment variables, or with the editor variable.

Xic
This button launches the Xic program, if it is available.

For schematic capture, the Xic program must be installed. When either editor is started, the currently
loaded circuit, if any, and if it has graphical information in the case of Xic, is loaded into the editor. The
simulation process can be initiated and controlled through Xic. The internal text editor has a Source
button, which allows the modified circuit to be passed directly back to WRspice for simulation. If another
editor is used, changes will have to be saved to disk and sourced from WRspice.

The Tools menu contains a configurable collection of command buttons which initiate pop-ups
which control or display various aspects or WRspice. Each of these pop-ups is a graphical short cut to a
collection of command line commands. Many users prefer the point-and-click interface to the command
line, though some do not. With WRspice, the user has a choice. The command functions available in
the Tools menu are listed below.

Circuits
Bring up a panel (see 3.7.1) listing the circuits that are currently in memory. The panel provides
capabilities for choosing the current circuit and deleting circuits from memory.

Colors
Bring up a panel (see 3.7) to set the colors used in the plots.

Commands
Bring up a panel (see 3.7) to customize the variables associated with the various commands.

Debug
Bring up a panel (see 3.7) used to control the debugging modes of WRspice.

Files
Pop up a panel (see 3.7.2) which displays a list of the files found along the sourcepath. Files can

be sourced or edited through this panel.

Fonts
This brings up a panel (see 3.7.3) that allows selection of the font used in the text areas of the

various tools, and in plot windows used for displaying simulation results.

132 CHAPTER 3. THE WRSPICE USER INTERFACE

Plot Defs
Bring up a panel (see 3.7) to control the myriad of variables associated with plotting.

Plots
Bring up a panel (see 3.7.4) which displays a list of the plots in memory. The panel provides

capabilities for selecting the current plot, and for deleting plots.

Shell
Bring up a panel (see 3.7) used to control the default settings associated with the WRspice shell.

Sim Defs
Pop up a panel (see 3.7) used to modify the variables which affect circuit simulation.

Trace
Pop up a panel (see 3.7.5) which lists the “debugs” currently in effect. The “debugs” are directives
to interactively plot, or trace variables during simulation, or to pause the simulation when a
condition is met. The panel provides capability for deactivating or deleting “debugs”.

Variables
Pop up a panel (see 3.7.6) displaying the shell variables currently set.

Vectors
Pop up a panel (see 3.7.7) listing the vectors in the current plot. The panel provides an interface
for plotting or printing these vectors.

The Help menu provides entry into the help system, and provides access to other information. The
buttons found in this menu are listed below.

Help
Bring up the help viewer loaded with the top-level page. The help system provides an extensive
cross-referenced HTML database, and contains the latest information on WRspice features. The
help system is described in 3.14.

About
Bring up a text window with the current WRspice version number, copyright, and legal disclaimer.

Notes
Bring up a text browser loaded with the release notes for the current release of WRspice. The
release notes provide detailed information about changes in the present release, and serve as a
supplement to the manual. Changes and new features should also have been incorporated into the
help database.

3.6 Text Entry Windows

In many operations, text is entered by the user into single-line text-entry areas that appear in pop-up
windows. These entry areas provide a number of editing and interprocess communication features which
will be described.

3.6. TEXT ENTRY WINDOWS 133

3.6.1 Selections and Clipboards

Under Unix/Linux, there are two similar data transfer registers: the “primary selection”, and the “clip-
board”. both correspond to system-wide registers, which can accommodate one data item (usually a
text string) each. When text is selected in any window, usually by dragging over the text with button 1
held down, that text is automatically copied into the primary selection register. The primary selection
can be “pasted” into other windows that are accepting text entry.

The clipboard, on the other hand, is generally set and used only by the GTK text-entry widgets.
This includes the single-line entry used in many places, and the multi-line text window used in the text
editor (see 3.9), file browser, and some other places including error reporting and info windows. From
these windows, there are key bindings that cut (erase) or copy selected text to the clipboard, or paste
clipboard text into the window. The cut/paste functions are only available if text in the window is
editable, copy is always available.

Under Windows there is a single “Windows clipboard” which is a system-wide data-transfer register
that can accommodate a single data item (usually a string). This can be used to pass data between
windows. In use, the Windows clipboard is somewhat like the Unix/Linux clipboard.

Text in most text display windows can be selected by dragging with button 1 held down, however
the selected text is not automatically added to the Windows clipboard. On must initiate a cut or copy
operation in the window to actually save the selected text to the Windows clipboard. The “copy to
clipboard” accelerator Ctrl-C is available from most windows that present highlighted or selected text.
Note that there is no indication when text is copied to the clipboard, the selected text in all windows
is unaffected, i.e., it won’t change color or disappear. The user must remember which text was most
recently copied to the Windows clipboard.

In both Unix/Linux and Windows, the single-line entry is typically also a receiver of drop events,
meaning that text can be dragged form a drag source, such as the File Manager, and dropped in the
entry area by releasing button 1. The dragged text will be inserted into the text in the entry area, either
at the cursor or at the drop location, depending on the implementation.

3.6.2 Single Line Key Bindings

The following table provides the key bindings for single-line text entry areas in Unix/Linux.

Unix/Linux Single-Line Bindings

Ctrl-A Move cursor to beginning of line
Ctrl-B Move cursor backward one character
Ctrl-C Copy selected text to clipboard
Ctrl-D Delete next character
Ctrl-E Move cursor to end of line
Ctrl-F Move cursor forward one character
Ctrl-H Delete previous character
Ctrl-K Delete to end of line
Ctrl-P Paste primary selection at cursor
Ctrl-U Delete current line
Ctrl-V Paste clipboard at cursor
Ctrl-W Delete backward one word
Ctrl-X Cut selection to clipboard
Alt-B Move cursor backward one word

134 CHAPTER 3. THE WRSPICE USER INTERFACE

Alt-D Delete word
Alt-F Move cursor forward one word
Home Move cursor to beginning of line
End Move cursor to end of line
Left Move cursor left one character
Ctrl-Left Move cursor left one word
Right Move cursor right one character
Ctrl-Right Move cursor right one word
Backspace Delete previous character
Ctrl-Backspace Delete previous word
Clear Delete current line
Shift-Insert Paste clipboard at cursor
Ctrl-Insert Copy selected text to clipboard
Delete Delete next character
Shift-Delete Cut selected text to clipboard
Ctrl-Delete Delete next word

Clicking with button 1 will move the cursor to that location. Double clicking will select the clicked-
on word. Triple clicking will select the entire line. Button 1 is also used to select text by dragging the
pointer over the text to select.

Clicking with button 2 will paste the primary selection into the line at the click location.

Button 3 will also select text, but the selected text is not copied to the primary selection register.
Text selected in this manner can be saved to the clipboard just as a normal selection.

The following table privides the key bindings for single-line text entry areas in Windows. Note that
the bindings are a subset of those available in the general purpose text editor.

Windows Single-Line Bindings

Ctrl-C Copy selected text to the Windows clipboard
Ctrl-V Paste the Windows clipboard contents at the cursor
Ctrl-X Cut selected text to the Windows clipboard
Ctrl-Z Undo last operation
Backspace Delete selected text, or the character to the left of the cursor if no

text is selected
Delete Delete selected text, or the character to the right of the cursor if

no text is selected
Shift-Delete Cut selected text to the Windows clipboard
Ctrl-Delete Delete to end of line
Shift-Insert Perform a ”paste” from the Windows clipboard
Home Move cursor to the start of the line
End Move cursor to the end of the line

The arrow keys move the cursor, and with Ctrl pressed the left and right arrow keys move the cursor
word-by-word. Holding the Shift key while moving the cursor with the mouse or with other keys will
select the intervening text.

The left mouse button is used to move the cursor by clicking, and to select text by dragging. In some
windows, clicking with button 3 will bring up a menu containing entries for cut, paste, etc.

3.7. THE VARIABLE SETTING TOOLS 135

3.7 The Variable Setting Tools

The Plot Defs, Colors, Shell, Sim Defs, Commands, and Debug buttons in the Tools menu of
the Tool Control window bring up panels which control the values of internal variables. These variables
can also be set with the set command, though the panels may provide a more convenient interface.

The panels each contain a Help button. Pressing the Help button pops up a window containing a
listing of the variables which can be set with the panel. Clicking on a word in the listing will bring up
the help viewer with a description of that variable.

Some of the panels are organized into multiple pages, with each page containing the variables in a
particular category. For example, in the Commands pop-up, the variables are paged according to the
command they modify.

Each variable has its own “box” in the panel. This box contains a Set button, and optionally a Def
button and a text input area. The text input area can take several forms, depending on the type of
variable: string, integer, or real. Boolean variables have only the Set button. Text can be entered into
the area, or in some cases the up/down arrows to the right of the text area can be clicked to adjust the
text.

When the Set button is active, the variable is set to the value shown in the text area (if any), and the
text area is frozen, i.e., can’t be edited. The text area can be changed only with the Set button inactive,
in which case the value in the text area is arbitrary. The value is only known to WRspice when the Set
button is active, in which case the variable should appear in the listing brought up by the Variables
button in the Tools menu in the Tool Control window.

The Def button will enter the default value for the variable into the text area. This button becomes
active if the text area is modified.

3.7.1 The Circuits Tool

This panel is available from the Circuits button in the Tools menu of the Tool Control window. It
provides a listing of the circuits currently in memory. A circuit description can be read from a file with
the source command. If the user clicks on the text of one of the listed circuits, that circuit becomes
the current circuit, i.e., the circuit which will simulate with the run command. The panel contains the
following buttons:

Delete Current
Delete the current circuit from memory.

Help
Bring up help on this panel.

Dismiss
Remove the circuits panel from the screen.

3.7.2 The Files Tool

This panel is available from the Files button in the Tools menu of the Tool Control window. It provides
a listing of files found in each directory of the “sourcepath” search path. The sourcepath is a list of
directories that are searched for circuit description files, if a file name is given to WRspice without a
path prefix.

136 CHAPTER 3. THE WRSPICE USER INTERFACE

The panel contains a drop-down menu which has an entry for each directory in the search path. The
main text area lists the files found in the currently selected directory.

A file from the list can be selected by clicking with mouse button 1 on the text. The text can
be deselected by clicking in the text window away from any text. The file listing participates in the
drag/drop protocol as a drag source and drop receiver.

The following buttons are provided:

Edit
If a file is selected, bring up a text editor with the file loaded as with the edit command. If no file
is selected, the button becomes active, and the user can click on a file in the text window to edit
it.

Source
If a file is selected, source it as with the source command. If no file is selected, the button becomes
active, and the user can click on a file in the text window to source it.

Help
Bring up help on this panel.

Dismiss
Remove the files panel from the screen.

3.7.3 The Fonts Tool

This panel allows selection of the fonts used in the graphical interface. A drop-down menu provides
selection of the various font targets. Pressing the Apply button will immediately apply the selected
font to all visible windows which use the font.

The drop-down font targets list contains the following entries:

Fixed Pitch Text Window Font
This sets the font used in pop-up multi-line text windows, such as the Files Listing and others,
where the names are formatted into columns.

Proportional Text Window Font
This sets the font used in pop-up multi-line text windows where text is not formatted, such as the
error message pop-up.

Fixed Pitch Drawing Window Font
This is the font used in the plot windows and in the Tool Control window.

Text Editor Font
This is the font used in the Text Editor pop-up.

HTML Viewer Proportional Font (Unix/Linux only)
This is the base font used for proportional text in the HTML viewer (help windows).

HTML Viewer Fixed Pitch Font (Unix/Linux only)
This is the base fixed-pitch font used by the HTML viewer.

3.7. THE VARIABLE SETTING TOOLS 137

The Font button in the Options menu of the Text Editor brings up a similar panel, as does the
Font button in ther Options menu of the help viewer.

These fonts can be set in the .wrspiceinit startup file by giving setfont commands. These are
inserted automatically when the Update button in the File menu is pressed, or an update command
is given.

3.7.4 The Plots Tool

This panel is available from the Plots button in the Tools menu of the Tool Control window. It provides
a listing of the plots currently in memory. A plot is a collection of output data vectors generated during
a simulation run. In addition, there is always the constants plot, which contains some useful physical
constants. A plot from the list can be selected as the current plot by clicking on the text in the list.
The current plot is used to resolve vector names in expressions given to commands and elsewhere. The
panel contains the following buttons:

New Plot
This creates an empty plot structure, and makes it the current plot.

Delete Current
Delete the current plot from memory.

Help
Bring up help on this panel.

Dismiss
Remove the plots panel from the screen.

3.7.5 The Trace Tool

This panel is available from the Trace button in the Tools menu of the Tool Control window. It provides
a listing of the “debugs” (i.e., traces, breakpoints, interactive plots) currently in effect. These “debugs”
are set with the save, stop, trace, and iplot commands.

A debug can be made inactive by clicking on the text in the list, in which case an ‘I’ appears in the
first column. Click on the text a second time to restore activation. Inactive debugs are ignored during
simulation. The following buttons are available:

Help
Bring up help on this panel.

Delete Inactive
Delete the debugs selected as inactive, i.e., those listed with “I” in the first column.

Dismiss
Remove the trace panel from the screen.

3.7.6 The Variables Tool

This panel is available from the Variables button in the Tools menu of the Tool Control window. It
provides a listing of the variables currently set in the shell, either with the set command or by other

138 CHAPTER 3. THE WRSPICE USER INTERFACE

means. The format of the listing is the same as that used by the set command without arguments. The
following buttons are available:

Help
Bring up help on this panel.

Dismiss
Remove the variables panel from the screen.

3.7.7 The Vectors Tool

This panel is available from the Vectors button in the Tools menu of the Tool Control window. It
provides a listing of the vectors in the current plot. The current plot can be selected with the Plots
button in the Tools menu.

A vector can be selected by clicking on the text, and selection is indicated by a ‘>’ symbol in the first
column. Any number of vectors can be selected. Click on the vector entry a second time to deselect it.
The selected vectors are used by the buttons described below.

Help
Bring up help on this panel.

Desel All
Desselect all selected vectors.

Print
Print the values of the selected vectors in the console window, as with the print command.

Plot
Plot the values of the selected vectors, as with the plot command.

Delete
Delete the selected vectors from the plot.

Dismiss
Remove the vectors panel from the screen.

3.8 The File Manager

The File Selection pop-up allows the user the navigate the host’s file systems, and select a file for input
to the program.

The panel provides two windows; the left window displays the subdirectories in a tree format, and
the right window displays a listing of files in a columnar form. The panel is similar in operation to the
Windows Explorer tool provided by Microsoft.

When the panel first appears, the directories listing contains a single entry, which is shown selected,
and the files window contains a list of files found in that directory. The tree “root” is selected by the
application, and may or may not be the current directory. If the directory contains subdirectories, a
small box containing a ‘+’ symbol will appear next to the directory entry. Clicking on the ‘+’ will cause
the subdirectories to be displayed in the directory listing, and the ‘+’ will change to a ‘-’. Clicking

3.8. THE FILE MANAGER 139

again on the ‘-’ will hide the subdirectory entries. Clicking on a subdirectory name will select that
subdirectory, and list its files in the files listing window.

Clicking on the blue triangle in the menu bar will push the current tree root to its parent directory.
If the tree root is pushed to the top level directory, the blue triangle is grayed. The label at the bottom
of the panel displays the current root of the tree. There is also a New Root item in the File menu,
which allows the user to enter a new root directory for the tree listing. In Windows, this must be used
to list files on a drive other than the current drive.

The Up menu is similar, but it produces a drop-down list of parent directories. Selecting one of the
parents will set the root to that parent, the same as pressing the blue triangle button multiple times to
climb the directory tree.

The New CWD button in the File menu allows the user to enter a new current working directory
for the program. This will also reset the root to the new current working directory. The small dialog
window which receives the input, and also a similar dialog window associated with the New Root
button, are sensitive as drop receivers for files. In particular, one can drag a directory from the tree
listing and drop it on the dialog, and the text of the dialog will be set to the full path to the directory.

In the Unix/Linux version, the ‘+’ box will appear with subdirectories only after the subdirectory is
selected. In the Windows version, the the ‘+’ boxes will be visible without selection.

The files listed in the files listing always correspond to the currently selected directory. File names
can be selected in the files listing window, and once selected, the files can be transferred to the calling
application. The Go button, which has a green octagon icon, accomplishes this, as does the Open entry
in the File menu. These buttons are only active when a file is selected. One can also double-click the
file name which will send the file to the application, whether or not the name was selected.

Files can be dragged and dropped into the application, as an alternative to the Go button. Files
and directories can also be dragged/dropped between multiple instances of the File Selection pop-up,
or to other file manager programs, or to other directories within the same file manager pop-up. The
currently selected directory is the target for files dropped in the files listing window. When dragging in
the directory listing, the underlying directory is highlighted. The highlighted directory will be the drop
target.

A confirmation pop-up will always appear after a drag/drop. This specifies the source and destination
files or directories, and gives the user the choice of moving, copying or (if not in Windows) symbolically
linking, or aborting the operation.

In Windows, directories can only be moved, not copied.

The File menu contains a number of commands which provide additional manipulations. The New
Folder button will create a subdirectory in the currently selected directory (after prompting for a name).
The Delete button will delete the currently selected file. If no file is selected, and the currently selected
directory has no files or subdirectories, it will be deleted. The Rename command allows the name of
the currently selected file to be changed. If no file is selected, the name change applies to the currently
selected directory.

The Listing menu contains entries which affect the file name list. By default, all files are listed,
however the user can restrict the listing to certain files with the filtering option. The Show Filter
button displays an option menu at the bottom of the files listing. The first two choices are “all files” and
the set of extensions known to correspond to supported layout file formats. The remaining choices are
editable and can be set by the user. The format is the same as one uses on a Unix command line for, e.g.,
the ls command, except that the characters up to the first colon (‘:’) are ignored. It is intended that the
first token be a name for the pattern set, followed by a colon. The remaining tokens are space-separated

140 CHAPTER 3. THE WRSPICE USER INTERFACE

patterns, any one of which if matching a file will cause the file to be listed.

In matching filenames, the character ‘.’ at the beginning of a filename must be matched explicitly.
The character ‘*’ matches any string of characters, including the null string. The character ‘?’ matches
any single character. The sequence ‘[...]’ matches any one of the characters enclosed. Within ‘[...]’, a pair
of characters separated by ‘-’ matches any character lexically between the two. Some patterns can be
negated: The sequence ‘[ˆ...]’ matches any single character not specified by the characters and/or ranges
of characters in the braces. An entire pattern can also be negated with ‘^’. The notation ‘a{b,c,d}e’ is
a shorthand for ‘abe ace ade’.

The Relist button will update the files list. The file listing is automatically updated when a new
filter is selected, or when Enter is pressed when editing a filter string.

The files are normally listed alphabetically, however if List by Date is selected, files will be listed in
reverse chronological order of their creation or last modification time. Thus, the most-recently modified
file will be listed first.

The Show Label toggle button controls whether or not the label area is shown. The label area
contains the root directory and current directory, or a file info string. By default, the label area is shown
when the pop-up is created as a stand-alone file selector, but is not shown when the pop-up appears as
an adjunct when soliciting a file name.

When the pointer is over a file name in the file listing, info about the file is printed in the label area
(if the label area is visible). This is a string very similar to the “ls -l” file listing in Unix/Linux. It
provides:

1. The permission bit settings and file type codes as in “ls -l” (Unix/Linux only).

2. The owner and group (Unix/Linux only).

3. The file size in bytes.

4. The last modification date and time.

While the panel is active, a monitor is applied to the listed files and directories which will auto-
matically update the display if the directories change. The listings should respond to external file or
directory additions or deletions within half a second.

3.9 The Text Editor

WRspice provides a general-purpose text editor window. It is used for editing text files or blocks, and
may be invoked in read-only mode for use as a file viewer. In that mode, commands which modify the
text are not available.

The following commands are found in the File menu of the editor. Not all of these commands may
be available, for example the Open button is absent when editing text blocks.

Open
Bring up the File Selection panel. This may be used to select a file to load into the editor. This
is the same file manager available from the Open button in the File menu of the Tool Control
Window.

3.9. THE TEXT EDITOR 141

Load
Bring up a dialog which solicits the name of a file to edit. If the current document is modified and
not saved, a warning will be issued, and the file will not be loaded. Pressing Load a second time
will load the new file, discarding the current document.

Read
Bring up a dialog which solicits the name of a file whose text is to be inserted into the document
at the cursor position.

Save
Save the document to disk, or back to the application if editing a text block under the control of
some command.

Save As
Pop up a dialog which solicits a new file name to save the current document under. If there is
selected text, the selected text will be saved, not the entire document.

Print
Bring up a pop-up which enables the document to be printed to a printer, or saved to a file.

Write CRLF
This menu item appears only in the Windows versions. It controls the line termination format
used in files written by the text editor. The default is to use the archaic Windows two-byte (DOS)
termination. If this button is unset, the more modern and efficient UNIX-style termination is used.
Older Windows programs such as Notepad require two-byte termination. Most newer objects and
programs can use either format, as can the XicTools programs.

Quit
Exit the editor. If the document is modified and not saved, a warning is issued, and the editor is
not exited. Pressing Quit again will exit the editor without saving.

The editor can also be dismissed with the window manager “dismiss window” function, which may
be an ‘X’ button in the title bar. This has the same effect as the Quit button.

The editor is sensitive as a drop receiver. If a file is dragged into the editor and dropped, and neither
of the Load or Read dialogs is visible, the Load dialog will appear with the name of the dropped file
preloaded into the dialog text area. If the drop occurs with the Load dialog visible, the dropped file
name will be entered into the Load dialog. Otherwise, if the Read dialog is visible, the text will be
inserted into that dialog.

If the Ctrl key is held during the drop, and the text is not read-only, the text will instead be inserted
into the document at the insertion point.

The following commands are found in the Edit menu of the text editor.

Undo This will undo the last modification, progressively. The number of operations that can be undone
is limited to 25 in Windows, but is unlimited in Unix/Linux.

Redo This will redo previously undone operations, progressively.

The remaining entries allow copying of selected text to and from other windows.

Under Windows there is a single “Windows clipboard” which is a system-wide data-transfer register
that can accommodate a single data item (usually a string). This can be used to pass data between
windows.

142 CHAPTER 3. THE WRSPICE USER INTERFACE

Text in many text display windows (including the text editor) can be selected by dragging with
button 1 held down, however the selected text is not automatically added to the Windows clipboard.
On must initiate a cut or copy operation in the window to actually save the selected text to the Windows
clipboard.

Under Unix/Linux, there are two similar data transfer registers: the “primary selection”, and the
“clipboard”. Both correspond to system-wide registers, which can accommodate one data item (usually
a text string) each. When text is selected in any window, usually by dragging over the text with button
1 held down, that text is automatically copied into the primary selection register. The primary selection
can be “pasted” into other windows that are accepting text entry.

The clipboard, on the other hand, is generally set and used only by the GTK text-entry widgets.
This includes the single-line entry used in many places, and the multi-line text window used in the
text editor, file browser, and some other places including error reporting and info windows. From these
windows, there are key bindings and/or menu items that cut or copy selected text to the clipboard, or
paste clipboard text into the window. The cut/paste functions are only available if text in the window
is editable, copy is always available.

Note that pressing mouse button 2 will paste the primary selection into to editor window (if the text
is editable) at the press location.

Cut to Clipboard
Delete selected text to the clipboard. The accelerator Crtl-X also performs this operation. This
function is not available if the text is read-only.

Copy to Clipboard
Copy selected text to the clipboard. The accelerator Ctrl-C also performs this operation. This
function is available whether or not the text is read-only.

Paste from Clipboard
Paste the contents of the clipboard into the document at the cursor location. The accelerator
Crtl-V also performs this operation. This function is not available if the text is read-only.

Paste Primary (Unix/Linux only)
Paste the contents of the primary selection register into the document at the cursor location. The
accelerator Alt-P also performs this operation. This function is not available if the text is read-only.

The following commands are found in the Options menu of the editor.

Search
Pop up a dialog which solicits a regular expression to search for in the document. The up and
down arrow buttons will perform the search, in the direction of the arrows. If the No Case button
is active, case will be ignored in the search. The next matching text in the document will be
highlighted. If there is no match, “not found” will be displayed in the message area of the pop-up.

The search starts at the current text insertion point (the location of the I-beam cursor). This may
not be visible if the text is read-only, but the location can be set by clicking with button 1. The
search does not wrap.

Source
Read the content of the editor into WRspice as through the source command. One can also save
the file to disk, and use the source command directly.

3.9. THE TEXT EDITOR 143

Font
This brings up a tool for selecting the font to use in the text window. Selecting a font will change
the present font, and will set the default font for new text editor class windows. This includes the
file browser and mail client pop-ups.

3.9.1 Text Editor Key Bindings

Characters are entered into the document as typed, at the current cursor location. The keys with special
bindings are listed below.

Unix/Linux Bindings

Ctrl-A Move cursor to beginning of line
Ctrl-B Move cursor backward one character
Ctrl-C Copy selected text to clipboard
Ctrl-D Delete next character
Ctrl-E Move cursor to end of line
Ctrl-F Move cursor forward one character
Ctrl-H Delete previous character
Ctrl-N Move cursor down one line
Ctrl-P Move cursor up one line
Ctrl-U Delete current line
Ctrl-V Paste clipboard at cursor
Ctrl-W Delete backward one word
Ctrl-X Cut selection to clipboard

Alt-B Move cursor backward one word
Alt-D Delete word
Alt-F Move cursor forward one word
Alt-P Paste primary selection at cursor

Home Move cursor to beginning of line
Ctrl-Home Move cursor to top of document
End Move cursor to end of line
Ctrl-End Move cursor to end of document
PageUp Move up one page
PageDown Move down one page
Up Move cursor up one line
Down Move cursor down one line
Left Move cursor left one character
Ctrl-Left Move cursor left one word
Right Move cursor right one character
Ctrl-Right Move cursor right one word
Backspace Delete previous character
Ctrl-Backspace Delete previous word
Clear Delete current line
Shift-Insert Paste clipboard at cursor
Ctrl-Insert Copy selected text to clipboard
Delete Delete next character
Shift-Delete Cut selected text to clipboard

144 CHAPTER 3. THE WRSPICE USER INTERFACE

Ctrl-Delete Delete next word

Clicking with button 1 will move the cursor to that location. Double clicking will select the clicked-on
word. Triple clicking will select the clicked-on line. Button 1 is also used to select text by dragging the
pointer over the text to select.

Clicking with button 2 will paste the contents of the clipboard (or any selected text) into the document
at the click location.

In GTK-1 releases, button 3 will also select text, but the selected text is not copied to the clipboard.
Text selected in this manner can be saved to the clipboard just as a normal selection. In GTK-2 releases,
button 3 will not select, but will instead bring up a context menu.

Microsoft Windows Bindings

Ctrl-A Select all text
Ctrl-C Copy selected text to the clipboard
Ctrl-V Paste the clipboard contents at the cursor
Ctrl-X Cut selected text to clipboard
Backspace Delete selected text, or the character to the left of the cursor if no

text is selected
Ctrl-Backspace Delete the word to the left of the cursor
Delete Delete selected text, or the character to the right of the cursor if

no text is selected
Shift-Delete Performs a “cut”, i.e., copies to the clipboard before deleting
Ctrl-Delete Delete the word to the right of the cursor
Insert Toggle insert/overwrite mode for typed characters
Shift-Insert Performs a “paste” from the clipboard
Home Move cursor to start of line
Ctrl-Home Move cursor to the top of the document
End Move to end of line
Ctrl-End Move cursor to the end of the document
Page Up Scroll up one page
Ctrl-Page Up Move cursor to start of first visible line
Page Down Scroll down one page
Ctrl-Page Down Move cursor to end of last visible line

The arrow keys move the cursor, and with Ctrl pressed the left and right arrow keys move the cursor
word-by-word. Holding the Shift key while moving the cursor with the mouse or with other keys will
select the intervening text. The left mouse button is used to move the cursor by clicking, and to select
text by dragging.

3.10 The Mail Client

The mail client can be used to send mail to arbitrary mail addresses, though when the panel appears,
it is pre-loaded with the address of Whiteley Research technical support. The text field containing the
address, as well as the subject, can be changed.

The main text window is a text editor with operations similar to the text editor used elsewhere in Xic

3.11. THE PLOT PANEL 145

and WRspice. The File menu contains commands to read another text file into the editor at the location
of the cursor (Read), save the text to a file (Save As) and send the text to a printer (Print). When
done, the Send Mail command in the File menu is invoked to actually send the message. Alternatively,
one can quit the mail client without sending mail by pressing Quit.

The Edit menu contains commands to cut, copy, and paste text.

The Options menu contains a Search command to find a text string in the text. The Attach
command is used to add a mime attachment to the message. Pressing this button will cause prompting
for the name of a file to attach. While the prompt pop-up is visible, dragging a file into the mail client
will load that file name into the pop-up. This is also true of the Read command. Attachments are shown
as icons arrayed along the tool bar of the mail client. Pressing the mouse button over an attachment
icon will allow the attachment to be removed.

In the Windows version, since Windows does not provide a reliable interface for internet mail, the
mail client and crash-dump report may not work. Mail is sent by passing the message to a Windows
interface called “MAPI”, which in turn relies on another installed program to actually send the mail. The
mail system is known to work if Outlook Express is installed and configured as the “Simple MAPI mail
client”. To configure this, from Outlook Express select Tools\Options\General from the menu. Then,
check the box next to “Make Outlook Express my default Simple MAPI client”. Outlook Express is
installed automatically with Internet Explorer.

3.11 The Plot Panel

This panel displays and controls aspects of plots generated from a simulation with the plot command.
The plot window contains a row of buttons on the right side. The button presence is determined by the
nature of the data plotted, as not all data support all features. The buttons that may be present are
listed below.

Dismiss
Remove the plot from the screen.

Help
Bring up the help viewer with pertinent information.

Redraw
Redraw the graph. This would be necessary to see new colors if the colors are changed, with the
Colors pop-up from the Tools menu of the Tool Control window.

Print
Bring up the printer control panel which controls hardcopy generation. The resulting hardcopy
data from the plot can be sent to a printer or saved in a file.

Save Plot
The will save the plot data in a rawfile or Common Simulation Data Format (CSDF) file. Either
file format can be read in with the load command to regenerate the plot. See the description of
the write command (4.4.9) for information about the formats, and how they can be specified. The
user is prompted for a name for the file.

Save Print
This will save the plot data in a file, in the same format as output from the print command. The
user is prompted for a name for the file.

146 CHAPTER 3. THE WRSPICE USER INTERFACE

Points
If this button is active, the data points are marked with a glyph. This is mutually exclusive with
the Comb button.

Comb
If this button, which is mutually exclusive with the Points button, is active, the data will be
presented as a histogram. If neither of Points or Comb is selected, a (possibly interpolated) line
drawing connecting the points will be presented.

Log X
If the data are consistent with a logarithmic scale of the x-axis, this button will appear. When
active, a log scale will be used on the x-axis.

Log Y
If the data are consistent with a logarithmic scale of the y-axis, this button will appear. When
active, a log scale will be used on the y-axis. Note that all traces must be consistent with a log
scale, and all traces will use a log scale if this button is active.

Marker
When active, a marker will be attached to the cursor, and the scale factors of the plot will be
replaced with the current position of the marker relative to the data. This is useful for actually
obtaining numerical data from the plot. If button 1 is clicked, a reference mark will be left behind,
and the readout will be relative to the values at the reference. Clicking with button 2 will remove
the reference.

When using the marker in a polar or Smith plot, the display indicates the real, imaginary, radius,
and angle in degrees of the current marker position. The radius and angle are shown in the lower
left corner of the plot window. In Smith plots, a family of real and imaginary values are shown,
corresponding to a set of values usually displayed along the x axis. For the imaginary contours, the
values correspond to the values printed in left to right order. If mouse button three is used to zoom
into a section of the Smith plot such that the x axis is invisible, the values corresponding to the
displayed real contours are listed along the top of the plot window. These numbers correspond to
the displayed real contours in left to right order. They also correspond to the imaginary contours,
however depending on the location in the Smith chart, not all imaginary contours, or additional
contours, may be visible. Ambiguity can be resolved through use of the marker.

Separate
When active, each trace will be assigned a portion of the overall vertical plot area, and a separate
scale. The traces will be scaled so as to not overlap. Otherwise, the entire vertical area is used for
each trace. The button will appear if there is more than one trace in the plot.

Single, Group
In the most general case, two buttons in a “radio group” control the y-axis scales of the traces.
These buttons are labeled Single and Group. If neither button is active, each trace will have
an independent “best fit” y scale. If Single is active, all traces will be plotted on the same “best
fit” y scale. If Group is active, the traces are scaled according to their data type. The types are
voltage, current, and other. Each group will have a separate “best fit” scale. If the trace is from a
node voltage, then it will have type voltage, however functions of voltages will probably have type
other. This is similarly true for currents.

The Single and Group buttons are prevented from being active at the same time. If there is only
one trace, or the traces are all of the same type, the Group button will not appear. If there is
only one trace, then the Single button will also not appear.

3.11. THE PLOT PANEL 147

3.11.1 Zooming in

If button 3 is pressed and held while pointing at the graph, an outline box is shown, which follows the
cursor, anchored at the location pointed to. Releasing button 3 will create a new plot of the area in the
box. Pressing Ctrl-button 1 is equivalent to button 3 for this operation.

3.11.2 Text String Selection

Text that appears in plots will use a font that can be changed from the font selection panel obtained from
the Fonts button in the Tools menu of the Tool Control window. This is the Fixed Pitch Drawing
Window Font in the menu. This font can also be changed with the setfont command.

Most of the text strings in plot windows can be edited, and persistent text labels can be added. The
possible manipulations are described below.

A string must be selected before it can be edited or otherwise altered. A string can be selected by
clicking on it with the left mouse button (button 1). The selection is indicated by the appearance of a
thick black bar to the left of the string, and a thin bar at the end of the string. At most one string can
be selected at a time.

A string can be deselected by clicking in the plot window away from any string. Clicking on another
string will move the selection to that string. When a string is selected, the left and right arrow keys will
cycle the selection to other strings in the plot that can be modified.

Only a selected string can be modified in any way. With a string selected:

• Pressing the Delete key will erase the string. There is no “undo” so be careful.

• The up and down arrow keys cycle through the various available colors, recoloring the selected
string. These are the same 19 colors used for plot traces. To change the color of the title, for
example, one would click on the title string, then press the up or down arrow keys until the title
color is satisfactory.

• The selected string can be dragged to a new location, or copied to a new location or to a different
plot window.

• The string can be edited.

A drag can be initiated by pressing and holding button 1 over the selected string, and moving the
mouse pointer. A “ghost” outline of the string will be “attached” to the mouse pointer. When the
button is released, the string will be moved to the new location. If the Shift key is pressed while the
mouse button is released, the string will be copied to the new location. Strings can be copied to other
plot windows using this drag and drop technique, but the Shift key is ignored in this case.

While dragging the string, the left and right arrow keys cycle through left, center, and right justi-
fication of the string. The string outline box attached to the mouse pointer will shift to indicate the
justification.

The selected string can be edited by using the Backspace key to remove characters from the right,
and by adding new characters to the end of the string. The string has has a notion of “termination”.
Terminated strings can’t be edited. When a selected string is terminated, the right-side indicator bar
is black. If the string is not terminated, the indicator bar is red (by default, actually this is the first
trace color). A string is un-terminated by pressing Backspace. Pressing Backspace additional times

148 CHAPTER 3. THE WRSPICE USER INTERFACE

will remove characters from the right. Typed characters will be added to the end of the string. The
string is terminated by pressing the Enter key, which causes the right-side indicator bar to turn black.

With no selection, or if the selection is terminated, typing characters into the plot window will start
a new string at the mouse cursor location, which becomes the new selection. Terminate the new string
by pressing Enter.

The strings, as modified or added, will appear in hard-copies generated from the Print button in the
plot window. If a new plot is created by using button 3 to zoom in, the child plot will inherit the text
strings of the parent plot. However, if the plot is saved to disk with the Save Plot button, the saved
strings will revert to the original strings. The file data format presently does not provide for alternate
strings.

3.11.3 Trace Drag and Drop

In plots, the traces can be moved by dragging with mouse button 1, either within a plot or between plot
windows. Thus, the order of the traces can be changed. Traces can be “grabbed” by pressing button
1 near the trace legend, but not over the legend text itself. A square wave marker is attached to the
pointer when a trace is being dragged.

Traces can be dropped within the legend area of another trace, in which case the dragged trace
occupies the drop trace location, and the drop trace and below are shifted down. Traces can be dropped
in the legend area but below all existing legends to move a trace to the end.

Dragging trace data between plots is an an easy way to see differences between simulation runs. The
trace data are copied and interpolated to the new scale. If the new scale is not compatible, the operation
will fail.

While a trace is being dragged, pressing the Delete key will delete the trace (and end the drag).
This will permanently remove the trace data from the plot, and is not undoable. However, if the plot
contains only a single trace, it will not be deleted.

3.11.4 Multidimensional Traces

When a plot window is displaying multidimensional data, the dimension map icon will appear in the
upper left corner of the plot window. Clicking on this icon will toggle display of the dimension map.
The dimension map allows the user to display only chosen dimensions of the traces.

Consider the plot produced by

set value1 = temp

loop -50 125 dc vds 0.0 1.2 0.02 vgs 0.2 1.2 0.2

The loop command produces a three dimensional plot, with dimensions { 8, 6, 61 }. When plotting
i(vds), the display would contain 48 traces, representing id vs. vds for each vgs and temperature value.

The visibility of these traces is set by the columns of clickable dimension selector indices shown in the
dimension map. In the present case the dimension map contains two columns: the left column contains
eight numbers 0–7, and the right columns contains six numbers 0–5. Clicking on these numbers controls
the visibility per dimension, i.e., clicking in the left column would display/suppress all traces for a given
temperature, clicking in the right column will display/suppress traces corresponding to a vgs value.
Multiple entries in the same column can be toggled by dragging the mouse pointer over them.

3.11. THE PLOT PANEL 149

This dimensional partitioning would apply for any number of dimensions. If a column contains too
many dimensions to list completely, a label “more” will exist at the bottom of the listing. Clicking on
this label will cycle through all of the dimensions, in the columns that require it.

If the plot is displaying a single multidimensional variable, then each least dimension is displayed in
a separate color. The numbers in the rightmost column of the dimension map will use the same colors.
In other columns, and in the rightmost column if more than one variable is being plotted, the indices
use a uniform color to indicate that the dimension is shown, and in all cases black indicates a dimension
that is not being shown.

The dimensions shown can also be controlled by mplot windows from the mplot command. These
are the windows generally used to display results from operating range and Monte Carlo analysis. The
mplot display consists of an array of pass/fail indication cells, one for each trial. These can be selected
or deselected by clicking on them.

An mplot window is always associated with an internal plot structure, as listed with the Plots tool.
The plot structure may also contain multidimensional vectors, for example if one uses the “-k”” option
to the check command, all trial data will be saved.

If an mplot window with selections is present, and the plot command is used to plot a multidimen-
sional vector from the same internal plot structure as the mplot, then only the dimensions corresponding
to the selected trials will be shown on the plot window.

In this plot window, a “flat” dimension map will be used. This is a single column, with length equal
to the product of the “real” dimensions. The visibility of each flat dimension can be toggled with the
map entries as usual. The mplot selections have no effect on a plot window once it is displayed, but
will initialize new plot windows to 1) enforce a flat dimension mapping, and 2) set the initial states of
the flat map. After changing the mplot selections, one must use the plot command again to see the
revised dimensions, or alternatively one can note the numbers of the mplot cells, and manipulate the
same numbers in the dimensions map of the first plot, to see the new data.

If one has a plot structure containing multidimensional vectors from any source, such as from the
loop commnd, one can still use the mplot capability. Giving the command

mplot vector

for any multidimensional vector will produce an mplot window. The number of mplot cells will equal
the number of flat dimensions in the vector. The pass/fail indication means nothing in this case, all cells
display “fail”. One can select the dimension cells in the mplot, which will affect subsequent plots from
the plot command of any vector in the same internal plot structure, as described above. The vector
given to the mplot command can be any vector from the plot, it is used for dimension counting only.

In older WRspice releases, the upper dimensions were represented as “flat”, so that in the plot there
would be a single column of numbers (0–47 in our original example above, six vgs values times eight
temperatures), and clicking on these numbers would display/suppress the corresponding trace.

3.11.5 Scale Icons

The plot windows contain icons for changing the scales. These are triangles; the x-axis icons are in the
lower left corner, and the y-axis icons are arrayed along the right edge. Clicking on one of these icons
has the following effects:

150 CHAPTER 3. THE WRSPICE USER INTERFACE

right or up
button 1 move the scale interval to the right or up
button 2 or Shift–button 1 extend the right or top scale factor to the right or up
button 3 or Ctrl–button 1 contract the right or top scale factor to the left or down

left or down
button 1 move the scale interval to the left or down
button 2 or Shift–button 1 extend the left or bottom scale factor to the left or down
button 3 or Ctrl–button 1 contract the left or bottom scale factor to the right or up

3.11.6 Field Width Icons

When a plot is displaying multiple data traces with different scales, a pair of triangular marks similar in
appearance to the scale icons appear near the top-left corner of the plot grid frame. Clicking on these
marks will move the plot grid frame to the left or right, shrinking or expanding the left margin area used
for the trace label text. This can improve the appearance of the plot when trace labels are unusually
long or short.

3.12 The Mplot Panel

This panel appears when plotting results from operating range or Monte Carlo analysis, and is brought
up by the mplot command. The display consists of an array of cells, each of which represent the results
of a single trial. As the results become available, the cells indicate a pass or fail, In operating range
analysis, the cells indicate a particular bias condition according to the axes. In Monte Carlo analysis, the
position of the cells has no significance. In this case the display indicates the number of trials completed.

The panel includes a Help button which brings up a help message, a Redraw button to redraw
the plot if, for example, the plotting colors are redefined, and a Print button for generating hard copy
output of the plot.

Text entered while the pointer is in the mplot window will appear in the plot, and hardcopies. This
text, and other text which appears in the plot, can be edited in the manner of text in plot windows.

The cells in an mplot can be selected/deselected by clicking on them. Clicking with button 1 will
select/deselect that cell. Using button 2, the row containing the cell will be selected or deselected, and
with button 3 the column will be selected or deselected. A selected cell will be shown with a colored
background, with an index number printed.

Only one mplot window can have selections. Clicking in a new window will deselect all selections in
other mplot windows. See the description of the mplot command in 4.7.5 for information about use of
the selections.

3.13 The Print Control Panel

The Print button in the plot and mplot panels brings up a panel which provides an interface to the
hardcopy drivers. The panel is a highly configurable multi-purpose printer interface used in many parts
of Xic and WRspice. This section describes all of the available features, however many of these features
may not be available, depending upon the context when the panel was invoked. For example, a modified
version of this panel is used for printing text files. In that case, only the Dismiss, To File, and Print
buttons are included.

3.13. THE PRINT CONTROL PANEL 151

Under Windows, the Printer field contains the name of a connected printer, initially the system
default printer. The up/down control to the right can be pressed to cycle through the list of available
printers.

Under Unix/Linux, the operating system command used to generate the plot is entered into the
Print Command text area of the Print Control panel. In this string, the characters “%s” will be
replaced with the name of the (temporary) file being printed. If there is no “%s”, the file name will be
added to the end of the string. The string is sent to the operating system to generate the plot.

The temporary file used to hold plot data before it is sent to the printer is not deleted, so it is
recommended that the print command include the option to delete the file when plotting is finished. In
WRspice, the hcopyrmdelay variable can be set to an integer to enable automatic delayed deletion of the
temporary file.

If the To File button is active, then this same field contains the name of the file to receive the plot
data, and nothing is sent to the printer. The user must enter a name or path to the file, which will be
created.

The size and location of the plot on the page can be specified with the Width, Height, Left, and
Top/Bottom text areas. The dimensions are in inches, unless the Metric button is set, in which case
the dimensions are in millimeters. The Width, Height, and offsets are always relative to the page in
portrait orientation (even in landscape mode). The vertical offset is relative to either the top of the
page, or the bottom of the page, depending on the details of the coordinate system used by the driver.
The label is changed from Top to Bottom in the latter case. Thus, different sized pages are supported,
without the driver having to know the exact page size.

The labels for the image height and width in the Print pop-up are actually buttons. When pressed,
the entry area for height/width is grayed, and the auto-height or auto-width feature is activated. Only
one of these modes can be active. In auto-height, the printed height is determined by the given width,
and the aspect ratio of the area printed. Similarly, in auto-width, the width is determined by the given
height and the aspect ratio of the area to print. In auto-height mode, the height will be the minimum
corresponding to the given width. This is particularly useful for printers with roll paper.

The full-page values for many standard paper sizes are selectable in the drop-down Media menu
below the text areas. Selecting a paper size will load the appropriate values into the text areas to produce
a full page image. Under Windows, the “Windows Native” driver requires that the actual paper type
be selected. Otherwise, this merely specifies the default size of the image.

Portrait or landscape orientation is selectable by the Portrait and Landscape buttons. These
interlocking buttons switch between portrait and landscape orientation. In portrait mode, the plot is in
the same orientation as seen on-screen, and in landscape mode, the image is rotated 90 degrees. However,
if the Best Fit button is active, the image can have either orientation.

When the Best Fit button is active, the driver is allowed to rotate the image 90 degrees if this
improves the fit to the aspect ratio of the plotting area. This supersedes the Portrait/Landscape setting
for the image.

The available output formats are listed in a drop-down menu. Printer resolutions are selectable in
the adjacent resolution menu. Not all drivers support multiple resolutions. Higher resolutions generate
larger files which take more time to process.

Pressing the Print button actually generates the plot or creates the output file. This should be
pressed once the appropriate parameters have been set. A pop-up message appears indicating success
or failure of the operation.

The Dismiss button retires the Print Control panel.

152 CHAPTER 3. THE WRSPICE USER INTERFACE

3.13.1 Print Drivers

The printing system for Xic and WRspice provides a number of built-in drivers for producing output
in various file formats. In Windows, an additional “Windows Native” driver uses the operating system
to provide formatting, thus providing support for any graphical printer known to Windows. The data
formats are selected from a drop-down menu available in the Print panel. The name of the currently
selected format is displayed on the panel.

Except for the “Windows Native” driver all formatting is done in the Xic/WRspice printer drivers,
and the result is sent to the printer as ”raw” data. This means that the selected printer must understand
the format. In practice, this means that the printer selected must be a PostScript printer, and one of
the PostScript formats used, or the printer can be an HP Laserjet, and the PCL format used, etc. The
available formats are listed below.

PostScript bitmap
The output is a two-color PostScript bitmap of the plotted area.

PostScript bitmap, encoded
This also produces a two color PostScript bitmap, but uses compression to reduce file size. Some
elderly printers may not support the compression feature.

PostScript bitmap color
This produces a PostScript RGB bitmap of the plotted area. These files can grow quite large, as
three bytes per pixel must be stored.

PostScript bitmap color, encoded
This generates a compressed PostScript RGB bitmap of the plotted area. Due to the file size, this
format should be used in preference to the non-compressing format, unless the local printer does
not support PostScript run length decoding.

Postscript line draw, mono
This driver produces a two color PostScript graphics list representing the plotted area.

PostScript line draw, color
This produces an RGB color PostScript graphics list representing the plotted area.

HP laser PCL
This driver roduces monochrome output suitable for HP and compatible printers. This typically
processes more quickly than PostScript on these printers.

HPGL line draw, color
This driver produces output in Hewlett-Packard Graphics Language, suitable for a variety of
printers and plotters.

Windows Native (Microsoft Windows versions only)
This selection bypasses the drivers in Xic or WRspice and uses the driver supplied by Windows.
Thus, any graphics printer supported by Windows should work with this driver.

The Windows Native driver should be used when there is no other choice. If the printer has an
oddball or proprietary interface, then the Windows Native driver is the one to use. However, for a
PostScript printer, better results will probably be obtained with one of the built-in drivers. The
same is true if the printer understands PCL, as do most laser printers. This may vary between
printers, so one should experiment and use whatever works best.

In the Unix/Linux versions, selecting a page size from the Media menu will load that size into the
entry areas that control printed image size. This is the only effect, and there is no communication

3.14. THE WRSPICE HELP SYSTEM 153

of actual page size to the printer. This is true as well under Windows, except in the Windows
Native driver. Microsoft’s driver will clip the image to the page size before sending it to the printer,
and will send a message to the printer giving the selected paper size. The printer may not print if
the given paper size is not what is in the machine. Thus, when using this driver, it is necessary to
select the actual paper size in use.

Xfig line draw, color
Xfig is a free (and very nice) drafting program available over the Internet. Through the transfig

program, which should be available from the same place, output can be further converted to a
dozen or so different formats.

Image: jpeg, tiff, png, etc
This driver converts into a multitude of bitmap file formats. This supports file generation only.
The type of file is determined by the extension of the file name provided (the file name should
have one!). The driver can convert to several formats internally, and can convert to many more by
making use of “helper” programs that may be on your system.

Internal formats:

Extension Format

ppm, pnm, pgm Portable Bitmap (netpbm)
ps PostScript
jpg, jpeg JPEG
png PNG
tif, tiff TIFF

Under Microsoft Windows, an additional feature is available. If the word “clipboard” is entered
in the File Name text box, the image will be composed in the Windows clipboard, from where it
can be pasted into other Windows applications. There is no file generated in this case.

On Unix/Linux systems, if you have the open-source ImageMagick or netpbm packages installed
then many more formats are available, including GIF and PDF. These programs are standard
on most Linux distributions. The imsave system, which is used to implement this driver and
otherwise generate image files, employs a special search path to find helper functions (convert
from ImageMagick, the netpbm functions, cjpeg and djpeg). The search path (a colon-delimited
list of directories) can be provided in the environment variable IMSAVE PATH. If not set, the
internal path is “/usr/bin:/usr/local/bin:/usr/X11R6/bin”. The helper function capability is
not available under Microsoft Windows.

The choice between PostScript line draw and bitmap formats is somewhat arbitrary. Although the
data format is radically different, the plots should look substantially the same. A bitmap format typically
takes about the same amount of time to process, independent of the data shown, whereas a line draw
format takes longer with more objects to render. For very simple layouts and all schematics and WRspice

plots, the line draw formats are the better choice, but for most layouts the bitmap format will be more
efficient.

The necessary preamble for Encapsulated Postscript (EPSF-3.0) is included in all PostScript files, so
that they may be included in other documents without modification.

3.14 The WRspice Help System

The WRspice help system provides a cross-referenced rich-text (HTML) database on the commands and
features of the program. The system is entered at the top level by pressing the Help button in the Help

154 CHAPTER 3. THE WRSPICE USER INTERFACE

menu of the Tool Control window, or by giving the help command without arguments. If a command
name or other known keyword is given as an argument to the help command, the help system will start
by displaying the help for that topic.

When graphics is not available, the help text will be presented in a text-only format in the console
window. The HTML to ASCII text converter only handles the most common HTML tags, so some
descriptions may look a little strange. The figures (and all images) are not shown, and clickable links
will not be available, other than the “references” and “seealso” topics.

Under Windows, the help viewer and HTML-based info windows use a Microsoft technology called
OLE (Object Linking and Embedding) and the Internet Explorer HTML viewer. It actually uses the
internals of Internet Explorer to do the HTML rendering. This requires that Internet Explorer 4.0 or
newer be installed. Although this technology is admittedly rather nifty, it has rather amazing internal
complexity, and when all is said and done, sad and severe limitations. Although the basic functionality is
provided, many of the more advanced/obscure features found in the Unix/Linux help system are missing.

Clicking on a colored HTML reference will bring up the text of the selected topic. If button 1 is
used to click, the text will appear in the same window. If button 2 is used to click, a new help window
containing the selected topic will appear.

The help system operates in one of two modes. The default mode is to use a single window for each
invocation of the help command. This is the only mode available in WRspice. In the multi-window
implementation, which can be selected in Xic by setting the boolean variable HelpMultiWin with the
!set command, a separate window is brought up for each press of a command button or menu item
while in help mode. In either case, clicking on a link may or may not produce a new window, depending
upon whether button 1 or button 2 was clicked.

Text shown in the viewer that is not part of an image can be selected by dragging with button 1,
and can be pasted into other windows in the usual way.

The viewer can be used to display any text file or URL. The name given to the help command, or
to to the Open command in the viewer’s File menu, can be

• A keyword for an entry in the help database.

• A path to a file on the local machine.

• An arbitrary URL accessible through the Internet.

If the given name can be resolved, the resulting page will be displayed in the viewer. Also, the HTML
viewer is sensitive as a drop receiver. If a file name or URL is dragged into the viewer and dropped, that
file or URL is read into the viewer, after confirmation.

The ability to access general URLs should be convenient for accessing information from the Internet
while using Xic and WRspice. The prefix “http://” must be provided with the URL. Thus, for example,

help http://www.wrcad.com

will bring up the Whiteley Research web page. The links can be followed by clicking in the usual way.
Of course, the computer must have Internet access for web pages to be accessible.

Be advised, however, that the “mozy” HTML viewer used in Unix/Linux releases is HTML-3.2
compliant with only a few HTML-4.0 features implemented, and has no JavaScript, Java or Flash
capabilities. A few years ago, this was sufficient for viewing most web sites, but this is no longer true.
Most sites now rely on css styles, JavaScript, and other features not available in mozy. Most sites are
still readable, to varying degrees, but without correct formatting.

3.14. THE WRSPICE HELP SYSTEM 155

The URL given in the Open command or through the help command is not relative to the current
page, however if a ‘+’ is given before the URL, it will be treated as relative. For example, if the viewer is
currently displaying http://www.foo.bar, if one enters “/dir/file.html”, the display will be updated
to /dir/file.html on the local machine. If instead one enters “+/dir/file.html”, the display will be
loaded with http://www.foo.bar/dir/file.html.

The HTTP capability imposes some obvious limitations on the string tokens which can be used in
the help database. These keywords should not use the ‘/’ character, or begin with a protocol specifier
such as “http:”.

HTML files on a local machine can be loaded by giving the full path name to the file. Relative
references will be found. HTML files will also be found if they are located in the help path, however
relative references will be found only if the referenced file is also in the help path. If a directory is
referenced rather than a file, a formatted list of the files in the directory is shown.

If a filename passed to the viewer has one of the following extensions, the text is shown verbatim.
The (case insensitive) extensions for plain-text files are “.txt”, “.doc”, “.log”, “.scr”, “.sh”, “.c”,
“.cc”, and “.h”.

In the WRspice help system, link references to files with a “.cir” extension will be sourced into
WRspice when the link is clicked on. Thus, if one has a circuit file named “mycircuit.cir”, and the
HTML text in the help window contains a reference like

click here

then clicking on the “click here” tag will source mycircuit.cir into WRspice. Similarly, link references
to files with a “.raw” extension will be loaded into WRspice (as a rawfile, i.e. a plot data file) when the
anchor is clicked.

This feature may solve a big problem. How many WRspice users have directories full of old simulation
files, the details about which are long forgotton or buried in some notebook somewhere? Now the
documentation task may be somewhat simpler. While doing simulations, one can maintain a text file
containing notes about the circuit and results, with HTML anchor tags to the actual circuit and data files.
Then, one can load the text file into the WRspice help system (if the notes are in a file “notes.html”,
one just types “help notes.html”), and browse the notes and have one-click access to the original files
and plot data. The notes file need not contain any other HTML constructs besides the anchor references.

Holding Shift while clicking on an anchor that points to a URL which specifies a file on a remote
system will download the file, as in Netscape. Downloading makes use of the httpget utility program
available in the Accessories distribution. Installation of the accessories is required for downloading to
be available under Unix/Linux. References to files with extensions “.rpm”, “.gz”, and other common
binary file suffixes will automatically cause downloading rather than viewing. When downloading, the file
selection pop-up will appear, pre-loaded with the file name (or “http return” if the name is not known)
in the current directory. One can change the saved name and the directory of the file to be downloaded.
Pressing the Download button will start downloading. A pop-up will appear that monitors the transfer,
which can be aborted with the Cancel button.

3.14.1 The HTML Viewer

When a new help window is about to appear, initialization is provided by a file named “.mozyrc” in
the user’s home directory, if it exists. This file sets a number of defaults used in the viewer, and can be
customized by the user. If the file is not found, internal defaults are used. A sample initialization file
is provided with the distribution, and can be installed by the user. ‘ There are three colored buttons

156 CHAPTER 3. THE WRSPICE USER INTERFACE

in the menu bar of the viewer. The left-facing arrow button (back) will return to the previous topic
shown in the window. The right-facing arrow button (forward) will advance to the next topic, if the
back button has been used. The Stop button will stop HTTP transfers in progress.

There are four drop-down menus in the menu bar: File, which contains basic commands for loading
and printing, Options, which contains commands for setting display attributes, Bookmarks, which
allows saving frequently used references, and Help which provides documentation.

The Open button in the File menu pops up a dialog into which a new keyword, URL, or file name
can be entered. The Open File button brings up the File Selection panel. The Ok button (green
octagon) on the File Selection panel will load the selected file into the viewer (the file should be a
viewable file). The file can also be dragged into the viewer from the File Selection panel.

The Save button in the File menu allows the text of the current window to be saved in a file. This
functionality is also provided by the Print button. The saved text is pure ASCII.

The Print button brings up a pop-up which allows the user to send the help text to a printer, or
to a file. The format of the text is set by the drop-down menu, with the current setting indicated on
the menu button. The choices are PostScript in four fonts (Times, Helvetica, New Century Schoolbook,
and Lucida Bright), HTML, or plain text. If the To File button is active, output goes to that file,
otherwise the command string is executed to send output to a printer. If the characters “%s” appear in
the command string, they are replaced with the temporary print file name, otherwise the temporary file
name is appended to the string.

The Reload button in the File menu will re-read the input file and redisplay the contents. This
can be useful when writing new help text or HTML files, as it will show changes made to the input file.
However, if you edit a “.hlp” file, the internally cached offsets for the topics below the editing point
will be wrong, and will not display correctly. When developing a help text topic, placing it in a separate
file will avoid this problem. If the displayed object is a web page, the page will be redisplayed from the
disk cache if it is enabled, rather than being downloaded again.

The Quit button in the File menu removes the help window.

The Search button in the Options menu brings up a dialog which solicits a regular expression to use
as a search key into the help database. The regular expression syntax follows POSIX 1003.2 extended
format (roughly that used by the Unix egrep command). The search is case-insensitive. When the
search is complete, a new display appears, with the database entries which contained a match listed in
the “References” field. The library functions which implement the regular expression evaluation differ
slightly between systems. Further information can be found in the Unix manual pages for “regex”.

The Find Text command enables searching for text in the window. A dialog window appears, into
which a regular expression is entered. Text matching the regular expression, if any, is selected and
scrolled into view, on pressing one of the blue up/down arrow buttons. The down arrow searches from
the text shown at the top of the window to the end of the document, and will highlight the first match
found, and bring it into view if necessary. The up button will search the text starting with that shown
at the bottom of the window to the start of the document, in reverse order. Similarly, it will highlight
and possibly scroll to the first match found. The buttons can be pressed repeatedly to visit all matches.

The Set Font button in the Options menu will bring up a font selection pop-up. One can choose
a typeface from among those listed in the left panel. The base size can be selected in the right panel.
There are two separate font families used by the viewer: the normal, proportional-spaced font, and a
fixed-pitch font for preformatted and “typewriter” text. Pressing Apply will set the currently selected
font. The display will be redrawn using the new font.

A disk cache of downloaded pages and images is maintained. The cache is located in the user’s home

3.14. THE WRSPICE HELP SYSTEM 157

directory under a subdirectory named “.wr cache”. The cache files are named “wr cacheN”” where N
is an integer. A file named “directory” in this directory contains a human-readable listing of the cache
files and the original URLs. The listing consists of a line with internal data, followed by data for the
cache files. Each such line has three columns. The first column indicates the file number N. The second
column is 0 if the wr cacheN file exists and is complete, 1 otherwise. The third column is the source
URL for the file. The number of files saved is limited, defaulting to 64. The cache only pertains to
files obtained through HTTP transfer. This directory may also contain a file named “cookies” which
contains a list of cookies received from web sites.

A page will not be downloaded if it exists in the cache, unless the modification time of the page is
newer than the modification time of the cache file.

The Don’t Cache button in the Options menu will disable caching of downloaded pages and images.

The Clear Cache button in the Options menu will clear the internal references to the cache. The
files, however, are not cleared.

The Reload Cache button in the Options menu will clear and reload the internal cache references
from the files that presently exist in the cache directory.

The Show Cache button in the Options menu brings up a listing of the URLs in the internal
cache. Clicking on one of the URLs in the listing will load that page or image into the viewer. This is
particularly useful on a system that is not continuously on-line. One can access the pages while on-line,
then read them later, from cache, without being on-line.

Support is provided for Netscape-style cookies. Cookies are small fragments if information stored
by the browser and transmitted to or received from the web site. There is a No Cookies button in
the help window Options menu to disable sending and receiving cookies. The NoCookies keyword in
the .mozyrc file (see below) can be set to 1 to disable cookies by default, or 0 for the default (enabled)
behavior. With cookies, it is possible to view the New York Times web site, for example, which requires
registration. It is also possible to view some commerce sites that require cookies. There is no encryption,
so it is not a good idea to send sensitive info like credit card numbers, though.

Image support is provided for gif, jpeg, png, tiff, xbm, and xpm. Animated gifs are supported as
well. Images found on the local file system are always displayed immediately (unless debugging options
are set in the startup file). The treatment of images that must be downloaded is set by a button group
in the Options menu. One and only one of these choices is active. If No Images is chosen, images
that aren’t local will not be displayed at all. If Sync Images is chosen, images are downloaded as they
are encountered. All downloading will be complete before the page is displayed. If Delayed Images is
chosen, images are downloaded after the page is displayed. The display will be updated as the images
are received. If Progressive Images is chosen, images are downloaded after the page is displayed, and
images are displayed in sections as downloading progresses.

There are choices as to how anchors (the clickable references) are displayed. If the Anchor Plain
button in the Options menu is selected, anchors will be displayed with standard blue text. If Anchor
Buttons is selected, a button metaphor will be used to display the anchors. If Anchor Underline
is selected, the anchor will consist of underlined blue text. The underlining style can be changed in
the “mozyrc” startup file. One and only one of these three choices is active. In addition, if Anchor
Highlight is selected, the anchors are highlighted when the pointer passes over them.

If the Bad HTML Warnings button in the Options menu is active, messages about incorrect
HTML format are emitted to standard output.

If the Freeze Animations button in the Options menu is active, active animations are frozen at
the current frame. New animations will stop after the first frame is shown. This is for users who find

158 CHAPTER 3. THE WRSPICE USER INTERFACE

animations distracting.

If the Log Transactions button in the Options menu is active, the header text emitted and received
during HTTP transactions is printed on the terminal screen. This is for debugging and hacking.

The Bookmarks menu contains entries to add and delete entries, plus a list of entries. The entries,
previously added by the user, are help keywords, file names, or URLs that can be accessed by selecting
the entry. Thus, frequently accessed pages can be saved for convenient access. Pressing the Add button
will add the page currently displayed in the viewer to the list. The next time the Bookmarks menu is
displayed, the topic should appear in the menu. To remove a topic, the Delete button is pressed. Then,
the menu is brought up again, and the item to delete is selected. This will remove the item from the
menu. Selecting any of the other items in the menu will display the item in the viewer. The bookmark
entries are saved in a file named “bookmarks” which is located in the same directory containing the
cache files.

3.14.2 The Help Database

The help system uses a fast hashed lookup table containing cached file offsets to the entry text. A
modular database provides flexibility and portability. The files are located by default in the directories
named “help” under the library tree, which is usually rooted at /usr/local/share/xictools. Xic and
WRspice allow the user to specify the help search path through environment variables and/or startup
files. All of the files with suffix “.hlp” in the directories along the help search path are parsed, and
reference pointers added to the internal list, the first time the help command is issued in the application.
In addition, other types of files, such as image files, which are referenced in the HTML help text may
be present as well.

The “.hlp” files have a simple format allowing users to create and modify them. Each help item is
indexed by a keyword which should be unique in the database. The help text may be in HTML or plain
text format. The format is described in A.2.

3.14.3 Help System Forms Processing

Support is provided for HTML forms. When the form “Submit” button is pressed, a temporary file
is created which contains the form output data. The file consists of key/value pairs in the following
formats:

name=single token
name=”any text”

There is no white space around ‘=’, and text containing white space is double-quoted. Each assignment
is on a separate line.

The action string from the “<form ...>” tag determines how this file is used. The file is a temporary
file, and is deleted immediately after use. If the action string is in the form “action local xxxx”, then
the form data are processed internally.

If the full path for the action string begins with “http://” or “ftp://”, then the form data are
encoded into a query string and sent to the location (though it is likely an error for ftp). Otherwise, the
file will processed locally. This enables the output from the form to be processed by a local shell script
or program, which can be very useful. The command given as the action string is given the file contents
as standard input. The command standard output will appear in the HTML viewer window. Thus, one
can create HTML form front-ends for favorite shell commands and programs.

3.15. THE WRSPICE SHELL 159

3.14.4 Help System Initialization File

When a help window pops up, an initialization file is read, if it exists. This file is named “.mozyrc” and
is sought in the user’s home directory. This file is never created, but if it exists it may be updated by
certain operations. This makes the change persistent. A sample .mozyrc file is provided in the startup
directory of the Xic and WRspice distributions. See the comments in the file for the defaults that can be
changed. One should place this text as “.mozyrc” in the home directory to change the defaults.

Incidently “mozy” is the name of the stand-alone version of the HTML viewer/web browser available
on the Whiteley Research web site.

3.15 The WRspice Shell

The command line interpreter in WRspice provides many of the features of a UNIX shell. The interpreter,
in addition to parsing and responding to command text input, is used as an interpreter for control scripts
which control WRspice operation. In addition, circuit descriptions have all shell variables expanded
during the sourcing process. Thus, shell variables can be used to set circuit parameters.

Various features are available in the WRspice shell which are similar to the user interface of the
C-Shell. These include IO redirection, history substitution, aliases, global substitution, and command
completion.

3.15.1 Command Line Editing

The WRspice shell contains a line editor system similar to that found in some UNIX shells. The left
and right arrow keys can be used to move the cursor within the line of text, so that text can be entered
or modified at any point. Pressing the Enter key sends the line of text to WRspice, regardless of where
the cursor is at the time. The up arrow key will load the line of text with the previously entered line
progressively. The down arrow key cycles back through the history text. Ctrl-E places the cursor at the
end of text, Ctrl-A places the cursor at the beginning of the line. Bsp (backspace) erases the character
to the left of the cursor, Delete deletes the character at the cursor, and Ctrl-K will delete from the
cursor to the end of the line. Ctrl-U will delete the entire line.

The following keys perform editing functions:

Ctrl-A Move cursor to beginning of line
Ctrl-D List possible completion matches
Tab Insert completion match, if any
Ctrl-E Move cursor to end of line
Ctrl-H or Bsp Erase character to left of cursor
Ctrl-K Delete to end of line
Ctri-U Delete line
Ctrl-V Insert following character verbatim
Delete Delete character at cursor
Left arrow Move cursor left
Right arrow Move cursor right
Up arrow Back through history list
Down arrow Forward through history list

By default, command line editing is enabled in interactive mode, which means that WRspice takes

160 CHAPTER 3. THE WRSPICE USER INTERFACE

control of the low level functions of the terminal window. Command line editing can be disabled by
setting the noedit variable (with the set command). If the terminal window doesn’t work with the editor,
it may be necessary that “set noedit” appear in the WRspice startup (.wrspiceinit) file. When noedit
is set, the command completion character is Esc, rather than Tab.

Some terminals may not send the expected character or sequence when one of these keys is pressed,
consequently there is a limited key mapping facility available. This mapping is manipulated with the
mapkey command, which allows most of the keys and combinations listed above to be remapped.

Unless WRspice can read the system terminfo/termcap data it needs, it will not allow command
line editing, and a warning message will be issued. This may mean that the TERM or TERMINFO
environment variables are not set or bogus, or the system terminal info database is incomplete or bad.
One can enter alternative terminal names with the -t command line option to potentially fix this
problem. The non-editing mode is like a standard terminal line, where backspace is available, but the
arrow keys and others that move the cursor have no special significance. This is the mode used when
“set noedit” is given.

3.15.2 Command Completion

Tenex-style command, filename, and keyword completion is available. If Ctrl-D (EOF) is typed, a list
of the commands or possible arguments is printed. If Tab (or instead, Esc if command line editing is
disabled) is typed, then WRspice will try to complete the word being typed based on the choices available,
or if there is more than one possibility, it will complete as much as it can. Command completion knows
about commands, most keywords, variable and vector names, file names, and several other types of
arguments. To get a list of all commands, the user can type Ctrl-D at the WRspice prompt. Note that
for keyboard input, the EOF character, Ctrl-D, does not exit the shell.

Command completion is disabled if the -q option is given on the WRspice command line, or if the
nocc variable is set.

3.15.3 History Substitution

History substitutions, similar to C-shell history substitutions, are also available. History substitutions
are prefixed by the character !, or at the beginning of a line, the character ^. Briefly, the string !!

is replaced by the previous command, the string !prefix is replaced by the last command with that
prefix, the string !?pattern is replaced by the last command containing that pattern, the string !number
is replaced by the event with that number, and ^oldpattern^newpattern is replaced by the previous
command with newpattern substituted for oldpattern.

Additionally, a !string sequence may be followed by a modifier prefixed with a :. This modifier may
select one or more words from the event — :1 selects the first word, :2-5 selects the second through
the fifth word, :$ selects the last word, and :$-0 selects all of the words but reverses their order.

Two other : modifiers are supported: :p will cause the command to be printed but not executed, and
:s^old^new will replace the pattern old with the pattern new . The sequence ^old^new is synonymous
with !!:s^old^new .

All the commands typed by the user are saved on the history list. This may be examined with the
history command, and its maximum length changed by changing the value of the history variable.

3.15. THE WRSPICE SHELL 161

3.15.4 Alias Substitution

Aliases are defined with the alias command, and may be removed with the unalias command.

After history expansion, if the first word on the command line has been defined as an alias, the text
for which it is an alias for is substituted. The alias may contain references to the arguments provided
on the command line, in which case the appropriate arguments are substituted in. If there are no such
references, any arguments given are appended to the end of the alias text.

If a command line starts with a backslash ‘\’ any alias substitution is inhibited.

3.15.5 Global Substitution

The characters ~, {, } have the same effects as they do in the C-Shell, i.e., home directory and alternative
expansion. In alternative expansion, if a token contains a form like “{foo,bar,baz}”, the token is
replicated with each replication containing one of the list items from the curly braces replacing the curly
brace construct. For example, the string “stuff{string1,string2,...stringN}morestuff” is replaced
by the list of words “stuffstring1morestuff stuffstring2morestuff ... stuffstringNmorestuff”.
Curly braces may be nested. A particularly useful example is

plot v({4,5,7})

which is equivalent to

plot v(4) v(5) V(7)

The string ~user (tilde at the beginning of a word) is replaced by the given user’s home directory, or
if the first component of the pathname is simply “~”, the current user’s home directory is understood.

It is possible to use the wildcard characters *, ?, [, and] to match file names, where * denotes 0
or more characters, ? denotes one character, and [...] denotes one of the specified characters, but
these substitutions are performed only if the variable noglob is unset. The pattern [^abc] will match all
characters except a, b, and c. The noglob variable is normally set so that the symbols have their usual
meanings in algebraic expressions. This can be unset with the unset command if command “globbing”
is desired.

3.15.6 Quoting

Words may be quoted with the characters (") (double quote), (’) (single quote), and (‘) (back quote).
A word enclosed by any of these quotes may contain white space. A string enclosed by double quotes
may have further special-character substitutions done on it, but it will be considered a single token by
the shell. A number so quoted is considered a string. A string enclosed by single quotes also has all
its special characters protected. Thus no global expansion (*, ?, etc), variable expansion ($), or history
substitution (^, !) will be done. A string enclosed by backquotes is considered a command to the shell
and is executed, and the output of the command replaces the text. The backslash character performs
the usual single character quoting function. In addition, Ctrl-V also provides a single character quoting
function from the keyboard.

162 CHAPTER 3. THE WRSPICE USER INTERFACE

3.15.7 I/O Redirection

The input to or output from commands may be changed from the terminal to a file by including IO
redirection on the command line. The possible redirections are:

> file
Send the output of the command into the file. The file is created if it doesn’t exist.

>> file
Append output to the file. The file is created if it doesn’t exist.

>& file
Send both the output and the error messages to the file. The file is created if it doesn’t exist.

>>& file
Append both the output and the error messages to the file. The file is created if it doesn’t exist.

< file
Read input from the file.

Both an input redirection and an output redirection may be present on a command line. No more
than one of each may be present, however. IO redirections must be at the end of the command line.

3.15.8 Semicolon Termination

More than one command may be put on one line, separated by semicolons ‘;’. The semicolons must be
isolated by white space, however. Thus a multi-command alias might be written

alias word ’command1 ; command2 ; ...’

3.15.9 Variables and Variable Substitution

Shell variables can be set with the set command, or graphically with some of the tools available in the
Tools menu of the Tool Control window. In particular, the Shell button in the Tools menu brings up
a panel which allows those variables which control shell behavior to be set. Both methods of setting and
unsetting the shell variables are equivalent. The Variables tool in the Tools menu provides a listing
of the variables currently set, and is updated dynamically when variables are set and unset. A variable
with any alphanumeric name can be set, though there are quite a number of predefined variable names
which have significance to WRspice.

Shell variables have boolean type if they are defined without assigning any text to them. Otherwise,
the variables take a single text token as their defining value, or a list of text tokens if the assigned value
consists of a list of tokens surrounded by space-separated parentheses. See 4.3.8 for details of the syntax
of the set command.

The values of variables previously set can be accessed in commands, circuit descriptions, or elsewhere
by writing $varname where the value of the variable is to appear. However, if a backslash (\) precedes
$, the variable substitution is not performed. The special variable references $$ and $< are replaced by
the process ID of the program and a line of input which is read from the terminal when the variable is
evaluated, respectively. Also, the notation $?foo evaluates to 1 if the variable foo is defined, 0 otherwise,
and $#foo evaluates to the number of elements in foo if it is a list, 1 if it is a number or string, and 0 if

3.15. THE WRSPICE SHELL 163

it is a boolean variable. If foo is a valid variable, and is of type list, then the expression $foo[low -high]
represents a range of elements. The values in the range specification [...] can also be shell variable
references. Either the upper index or the lower may be left out, and the reverse of a list may be obtained
with $foo[len-0].

If a variable reference has the form $&word , then word is assumed to be a vector, and its value is
used to satisfy the reference. Vectors consist of one or more real or complex numbers, and are produced,
among other ways, during simulation, in which case they represent simulation output. The shell variable
substitution mechanism allows reference to all of the vectors in scope. The reference can be followed by
range specifiers in square brackets, consistent with the dimensionality and size of the vector. The range
specifier can itself contain shell variable references. The complete information on vectors and vector
expressions is presented in 3.16.

The sequences $?&vector and $#&vector are accepted. The first expands to 1 if vector is defined
with the let command or otherwise, 0 if not. The second expands to the vector length or 0 if vector is
undefined. This is analogous to $?variable and $#variable for shell variables.

The notation $&(expression) is replaced by the value of the vector expression. A range specification
can be added, for example

echo $&(a+1)[2]

prints the third entry in vector a+1, or 0 if out of range.

When a circuit file is sourced into WRspice, each line of the circuit description has variable substitution
performed by the shell. Thus, shell variables can be used to define circuit parameters, if within the circuit
description the parameter is specified in the form of a variable reference. The variable substitution in a
SPICE deck allows a concatenation character ‘%’. This is used between a variable and other text, which
would otherwise mask the variable. For example

set value = 10

v1 1 0 pulse(0 $value%m 5p 10p)

expands to

v1 1 0 pulse(0 10m 5p 10p).

Without the %, the pattern match would fail.

3.15.10 Commands and Scripts

Command files are files containing circuit descriptions and/or shell commands. The first line of a
command file is ignored, so must be blank or a comment. This is a result of the source command being
used for both circuit input and command file execution.

A pure script file, i.e., one which does not include a circuit description, consists of an unread “title”
line, followed by a control block. The control block begins with a “.control” line, continues with one
or more executable statements, and terminates with a “.endc” line. In WRspice, an “.exec” line can be
used rather than the .control line, though for backward compatibility with SPICE3, it is recommended
that the traditional .control be used. The executable statements are any statements understandable
to the WRspice shell. Typically, such statements appear just as they would be entered on the command

164 CHAPTER 3. THE WRSPICE USER INTERFACE

line if given as text input. A script may be executed by entering its file name (there is an implicit
¡tt¿source¡/tt¿ command) followed by any arguments. Scripts can call other scripts to any depth.

Before a script is read, the variables argc and argv are set to the number of words on the command
line, and a list of those words respectively. Their previous values (if any) are pushed onto a stack, and
popped back in place when the script terminates. Thus, within a command script, these predefined
variables are available for use in the script. Otherwise, command files may not be reentrant since there
are no local variables, however, the procedures may explicitly manipulate a stack.

If a command file contains a circuit discription, then there is a subtle difference between .control

and .exec blocks, either or both of which can be contained in the file. By “file” we actually mean the
totality of text after expanding all .include, .lib and similar statements. The .exec block is executed
before the circuit lines are parsed, and thus before the lines are shell and parameter expanded. Thus,
shell variables set in the .exec block will be used when expanding the circuit. The .control block is
executed after the circuit is parsed, and is therefor the correct place to put analysis and post-processing
commands.

There may be various command scripts installed in the default scripts directory, and the default
sourcepath includes this directory, so one can use these command files (almost) like built-in commands.
In addition to scripts, there is an executable data structure called a “codeblock”. Codeblocks are derived
from scripts, but store the command text internally, so are somewhat more efficient. A codeblock has
the same name (in general) as the script file from which it was derived. See the description of the
codeblock command (in 4.4.1) for more information.

When a line of input is given to WRspice, the first word on the line determines how the line is
processed. The following logic is used to make this determination.

1. If the word is an alias, the line is replaced with the result after alias substitution, and the line is
re-parsed.

2. If the word matches the name of a codeblock in memory, the codeblock is executed.

3. If the word matches the name of an internal command, that command is executed.

4. If the first word is a vector name and is followed by “=”, the line is taken to be an implicit let
command (an assignment), in which case the line is executed as if it were preceded by the word
“let”.

5. If the word matches the name of a file found in one of the directories of the current sourcepath
(search path), an implicit source command is assumed. The line is executed as if it were preceded
by the word “source”. Thus, typing the name of a circuit or script file will source or run the file.

6. If the variable unixcom is set, and the word matches the name of a command known to the operating
system, the line will be sent to the operating system for execution.

If the variable unixcom is set and the operating system is supportive, commands which are not built-
ins are considered shell commands and executed as if the program were a shell. However, using this
option increases the start-up time of the program. Probably WRspice should not be used as a login shell.

WRspice can be used as the “shell” in UNIX shell scripts. In these scripts, the wrspice executable
should be called, using the convention applicable to the user’s UNIX shell. This generally requires that
the first line of the script begin with the characters “#!” and be followed by a space-separated program
invocation string. The remainder of the file should consist of standard WRspice command file lines, the
first line of which (second line of the file) will be ignored.

3.16. PLOTS, VECTORS AND EXPRESSIONS 165

For example, below is a script that can be saved in a file, which should be made executable (using
the UNIX command “chmod +x filename”). From the UNIX shell, typing the name of the file will run
WRspice on the example file mosamp2.cir and display the plot.

#! wrspice -J

#

.control

source /usr/local/share/xictools/wrspice/examples/mosamp2.cir

set noaskquit

echo Press Enter to quit

pause

quit

.endc

Typing the name of the file is the same as executing “wrspice -J file”. WRspice ignores the #!...

line, so that the next line is the “title” line and is also ignored. The -J (JSPICE3 compatibility) means
to not bring up the Tool Control window.

3.16 Plots, Vectors and Expressions

3.16.1 Plots and Vectors

WRspice data are in the form of vectors, which are lists of numbers that may represent, e.g., time,
voltage, or any typed or untyped set of values. Vectors of length one are termed “scalars”. During a
simulation, each of the circuit variables, plus a scale vector, are filled with data from the simulation.
For example, in transient analysis, the scale vector (named “time”) will contain the time values where
output is generated, and each node and other circuit variables will have a corresponding vector of the
same length as the scale, containing the values for the scale points.

For each simulation, the resulting vectors are contained in a “plot”. The plot is given a name (such
as “tran2”), and stored in a list with other plots. There is also an internally generated plot named
“constants” which contains various scalars set to constant values.

An analysis will produce a plot consisting of vectors representing simulated output data. The “current
plot” is usually the last plot produced by an analysis run, or the constants plot if no analyses have been
run or rawfiles loaded. The current plot can be changed with the setplot command, or with the Plots
button in the Tools menu. A vector from the current plot or the constants plot can be referenced by
name. A vector from any plot can be referenced with the notation

plotname.vecname

where plotname is the name of the plot, and vecname is the vector name.

When a plot data file is read into WRspice with the load command, a plot containing vectors is
produced, as if the anaylsis had been run. The new plot becomes the current plot.

The plotname can also be a numerical index. Plots are saved in the order created, and as listed by
the setplot command without arguments, and in the Plots tool. In addition to the plot name, the
following constructs are recognized. Below, N is an integer.

166 CHAPTER 3. THE WRSPICE USER INTERFACE

-N
Use the N ’th plot back from the current plot. N must be 1 or larger. For example, “-1.v(1)” will
reference v(1) in the previous plot.

+N
This goes in the reverse direction, indicating a plot later in the list than the current plot.

N
An integer without + or - indicates an absolute index into the plot list, zero-based. The value 0
will always indicate the “constants” plot, which is the first plot created (on program startup).

When using the plotname.vecname construct, internally the vector and its scale are copied into the
current plot as temporary vectors. If you do “plot -1.v(1)” (for example) it may be surprising to find
that the plot title, etc. are from the current plot, and not the source plot.

The default separation character is a period, however this can be changed by setting the variable
plot catchar. If this variable is set to a string consisting of a single punctuation character, that character
becomes the separator.

3.16.1.1 The constants Plot

The following values are defined in a plot named “constants”. This is the default plot if no rawfile has
been loaded and no simulation has been run. These constants are visible no matter what the current
plot is, but they are overridden by a vector with the same name in the current plot. The constants

plot can not be deleted, and its vectors are read-only. The values are in MKS units.

boltz Boltzmann’s constant (1.38062e-23 joules/degree kelvin)
const c The speed of light (2.997925e8 meters/second)
const e The base of natural logarithms (2.71828182844590452353)
echarge The charge on an electron (1.60219e-19 coulombs)
false False value (0)
const j The square root of -1, can be expressed as (0,1)
kelvin Absolute 0 in Centigrade (-273.15 degrees)
no False value (0)
phi0 Value of the flux quantum (2.06783e-15 webers)
pi π (3.14159265358979323846)
planck Planck’s constant (6.62620e-34 joule-seconds)
true Truth value (1)
yes Truth value (1)

3.16.2 Vector Characteristics

Vectors posses a dimensionality. A scalar is a vector of the lowest dimensionality. Most vectors are
one-dimensional lists of numbers. Certain types of analysis produce multidimensional vectors, which
are analogous to arrays. This dimensionality is indicated when the vectors are listed with the display
command or the let command without arguments. Plotting a multidimensional vector will produce a
family of traces. Elements and sub-dimensional vectors are specified with multiple square brackets, with
the bracket on the right having the lowest dimensionality.

For example, one might issue the following command:

3.16. PLOTS, VECTORS AND EXPRESSIONS 167

.ac dec 10 1Hz 1Mhz dc v1 0 2 .1 v2 4.5 5.5 .25

which will perform an ac analysis with the dc sources v1 and v2 stepped through the ranges 0–2 step .1
for v1, 4.5–5.5 step .25 for v2. The resulting output vectors will have dimensions [5,21,61], i.e., 5 values
for v2, 21 for v1, and 61 for the ac analysis. Typing “plot v(1)” (for example) would plot all 21*5
analyses on the same scale (this would not be too useful). However, one can plot subranges by entering,
for example, “plot v(1)[1]” which would plot the results for v2 = 4.75, or “plot v(1)[1][2]” for v2
= 4.75, v1 = .2, etc. Range specifications also work, for example “plot v(1)[2][0,2]” plots the values
for v2 = 5, v1 = 0, .1, .2. The memory space required to hold the multidimensional plot data can grow
quite large, so one should be reasonable.

Vectors have an indexing that begins with 0, and an index, or range of indices, can be specified
in square brackets following the vector name, for each dimension. The notation [lower,upper], where
lower and upper are integers, denotes the range of elements between lower and upper. The notation
[num] denotes the num’th element. If upper is less than lower, the order of the elements is reversed.

Vectors typically have defined units. The units are carried through a computation, and simplified
when the result is generated. Presently, the system can not handle fractional powers. The units of a
vector can be set with the settype command.

3.16.3 Vector Creation and Assignment

Vectors can be created with the let and compose commands.

Using the let command, a vector may be assigned the values of a vector already defined, or a floating-
point number (a real scalar), or a comma separated pair of numbers (a complex scalar). A number may
be written in any format acceptable to SPICE2, such as 14.6MEG or -1.231e-4. Note that one can use
either scientific notation or one of the abbreviations like MEG or G (case insensitive), but not both. As
with SPICE2, a number may have trailing alphabetic characters after it, which can indicate the units.
If the vector being assigned to does not exist, it will be created.

The compose command can also be used to create vectors, and is useful for creating vectors with
multiple points that follow some relationship, such as linear or logarithmic.

Newly-created vectors are added to the current plot, unless a plotname field is specified as part of
the vector reference name. For example, entering

let constants.myvec = 2

will assign a vector myvec in the constants plot the value 2.0. Entering

let myvec = constants.const e

will assign a vector myvec in the current plot the values of the vector const e in the constants plot.
The let command without arguments will print a listing of vectors in the current plot.

Recent WRspice releases also allow vectors to be assigned a value with the set command. The syntax
in this case is

set &vector = value

which is equivalent to

168 CHAPTER 3. THE WRSPICE USER INTERFACE

let vector = value

When entering this form from the WRspice command line, the ‘&’ character must be hidden from the
shell, perhaps most conveniently be preceding it with a backslash. The value must be numeric, and a
value must be given, unlike normal usage of the set command which can set a variable as a boolean by
omitting the right side of the assignment.

3.16.4 Analysis Vectors and Access Mapping

The vectors actually produced depend on the type of analysis, but the most common output is the
node voltage. Node voltages are denoted by vectors of the form v(N), where N is a name representing
the node. Although the notation looks like a function call, the construct actually refers to a vector,
and may be used in expressions whenever a vector is syntactically expected. Another common form
is name#branch, which represents the “branch” current through voltage sources and inductors. The
SPICE algorithm adds a term to the matrix for these elements, which represents the current flowing
through the device. As there is a specific matrix element for the current for these devices, the value is
available as an output variable. The name is the name of the voltage source or inductor.

For compatibility with SPICE2, several mappings and equivalences are provided. When referencing
node voltages, one can reference a node by name (e.g. v(6) or v(input)). These are string names of the
produced vectors. In addition, one can use the SPICE2 form for the argument inside the parentheses
of the node voltage construct. This is (node1 [,node2]), where if both node1 and node2 are given,
the vector represents the voltage difference between nodes node1 and node2. For example, v(1,2) is
equivalent to v(1) - v(2). The v() construct in the case of two arguments is like a function.

Additionally, the construct i(name) is internally mapped to name#branch, and the two notations
can be used interchangeably. The name is the name of a voltage source or inductor.

Additional mappings familiar from SPICE2 are also recognized in WRspice. In addition to v and i,
the following are recognized for node voltages. These are most useful for complex vectors as are produced
in ac analysis.

vm

This computes the magnitude, by mapping to the mag vector function. The following forms are
equivalent:

vm(a) = mag(v(a))

vm(a,b) = mag(v(a) - v(b))

vp

This computes the phase, by mapping to the ph vector function. The following forms are equivalent:

vp(a) = ph(v(a))

vp(a,b) = ph(v(a) - v(b))

vr

This computes the real part, by mapping to the re vector function. The following forms are
equivalent:

vr(a) = re(v(a))

vr(a,b) = re(v(a) - v(b))

3.16. PLOTS, VECTORS AND EXPRESSIONS 169

vi

This computes the imaginary part, by mapping to the im vector function. The following forms are
equivalent:

vi(a) = im(v(a))

vi(a,b) = im(v(a) - v(b))

vdb

This computes the decibel value (20*log10), by mapping to the db vector function. The following
forms are equivalent:

vdb(a) = db(v(a))

vdb(a,b) = db(v(a) - v(b))

Similar constructs are available for the current vectors of voltage sources and inductors. In these
constructs, the single argument is always the name of a “branch” device, either a voltage source or
inductor.

img

This computes the magnitude, by mapping to the mag vector function. The following forms are
equivalent:

img(vx) = mag(vx#branch)

Note that this name differs from the SPICE2 “im” to avoid a clash with the im() vector function
in WRspice.

ip

This computes the phase, by mapping to the ph vector function. The following forms are equivalent:

ip(vx) = ph(vx#branch)

ir

This computes the real part, by mapping to the re vector function. The following forms are
equivalent:

ir(vx) = re(vx#branch)

ii

This computes the imaginary part, by mapping to the im vector function. The following forms are
equivalent:

ii(vx) = im(vx#branch)

idb

This computes the decibel value (20*log10), by mapping to the db vector function. The following
forms are equivalent:

vdb(vx) = db(vx#branch)

There is one additional mapping available, p(devname), which returns the instantaneous power of a
device devname. This can be applied to any device that has a readable “p” parameter defined, which
is true for most devices. The show command can be used to list available device parameters. This
is particularly useful for sources, as it returns the power supplied to the circuit. For non-dissipative
elements, it represents the stored power.

170 CHAPTER 3. THE WRSPICE USER INTERFACE

This is a mapping to the special vector @devname[p] (see below). Thus, the special vector data
must be available for this form to be used successfully, meaning that in analysis, as with other special
vectors representing device parameters, the vector must be explicitly saved with the save command
or in a .save line. However, if this form is used in a .measure line, the needed vector will be saved
automatically. This is also true if the form is used in one of the “debugs” as listed with the status
command.

3.16.5 Special Vectors

Most simply, vector names can be any alphanumeric word that starts with an alpha character. Vector
names may also be of the form string(something), if the string is not the name of a built-in or user-defined
function.

There is one vector named “temper” that is always available, though not saved in any plot. This is
the current temperature assumed by the program, in Celsius.

In WRspice, a vector name beginning with the ‘@’ symbol is a “special” vector, and is considered a
reference to an internal device or model parameter, or a circuit parameter. If the vector name is of the
form @name[param], this denotes the parameter param of the device or model named name. Of course,
there must be a device or model with that name defined for the current circuit and param must be a
valid parameter name for that device or model type. See the documentation or use the show command
for a listing of the parameters available.

If the variable spec catchar is set to a string consisting of a single punctuation character, then that
character will identify a special vector, instead of ‘@’. The descriptions below use ‘@’, but in actuality
this character can be respecified by the user.

If the vector name is of the form @param, this refers to a parameter of the circuit with the name
param. The parameters obtained in this manner are those from the table below defined on a .options

line in the current circuit, those defined on a .param line in a current circuit, and the keywords of the
rusage command, sought in that order. These vectors may be used as arguments to commands and
functions which take vector arguments.

3.16. PLOTS, VECTORS AND EXPRESSIONS 171

Option Special Vectors
Reals Integers Flags
@abstol @bypass @gminfirst

@chgtol @gminsteps @jjaccel

@defad @interplev @noiter

@defas @itl1 @nojjtp

@defl @itl2 @noopiter

@defw @itl2gmin @notrapcheck

@dphimax @itl2src @noklu

@gmin @itl4 @nomatsort

@minbreak @maxord @noadjoint

@pivrel @srcsteps @oldlimit

@pivtol @spice3

@reltol @trytocompact

@temp

@tnom

@trapratio

@trtol

@vntol

@xmu

Rusage Special Vectors
Reals Integers
@elapsed @accept

@loadtime @equations

@lutime @fillin

@reordertime @matsize

@solvetime @nonzero

@space @rejected

@time @totiter

@tranlutime @trancuriters

@transolvetime @traniter

@trantime @tranpoints

@tranitercut

@trantrapcut

The special vectors that correspond to device and model parameters in the current circuit can be
assigned. Other special vectors are read-only. When a special vector is assigned, the effect is similar to
the alter command. Actual assignment is deferred until the next analysis run of the current circuit, and
assignment applies to that run only. The assignment must be repeated if needed for additional runs.

3.16.6 Vector Expressions

An expression is an algebraic combination of already defined vectors, scalars (a scalar is a vector of
length 1), constants, operators and functions. Some examples of expressions are:

cos(time) + db(v(3))

sin(cos(log(10)))

TIME*rnd(v(9)) - 15*cos(vin#branch)^7.9e5

not ((ac3.freq[32] & tran1.time[10]) gt 3)

172 CHAPTER 3. THE WRSPICE USER INTERFACE

One should note that there are two math subsystems in WRspice, the vector system described here,
and a second system for processing equations found in device descriptions during simulation (see 2.15.1).
Although the expressions are syntactically similar, there are important differences that must be taken
into account, and one should refer to the appropriate documentation for the type of expression.

Vector expressions can also contain calls to the built-in “tran” functions ordinarily used in volt-
age/current source specifications in transient analysis. These are the pulse, pwl, etc. functions de-
scribed in 2.15.3. If assigned to a vector, the vector will have a length equal to the current scale (e.g.,
the time values of the last transient analysis plot), and be filled in with values just as if the analysis was
run with the given source specification. For example

(run transient analysis: tran .1n 10n)
let a = pulse(0 1 1n 1n)

Vector a will have length 101 and contain the pulse values.

There are three such functions, sin, exp, and gauss, that have the same names as math functions.
The math functions always return data of the same length as the argument(s), and take 1 argument for
sin, exp and 2 for gauss. When one of these names is encountered in an expression, WRspice counts
the arguments. If the number of arguments is 1 for sin/exp or 1 or 2 for gauss, the math function is
called, otherwise the tran function is called. It may be necessary to give the gauss function a phony
additional argument to force calling the tran function.

Vectors can be evaluated by the shell parser by adding the prefix $& to the vector’s name. This is
useful, for example, when the value of a vector needs to be passed to the shell’s echo command, or
in circuit description files where vectors are to be evaluated by the shell as the file is read. Similar
to the shell constructs, $?&word expands to 1 if word is a defined vector, 0 otherwise. Also $#&word
expands to the length of word if word is a defined vector, or 0 if not found. Additionally, the notation
$&(vector expression) is replaced by the value of the vector expression. A range specification can be
added, for example echo $&(a+1)[2] prints the third entry in a+1, or 0 if out of range. If white space
exists in the $&(...) construct, it probably should be quoted. Finally, the shell recognizes the construct
$&v($something) as a reference to a SPICE node voltage, so that one can index node voltages as echo
$&v($&i), for example. A range specification can be added, which can contain shell variables. This is
true for both vectors ($& prefix) and variables.

3.16.7 Operators in Expressions

The operations available in vector expressions are listed below. They all take two operands, except for
unary minus and logical negation.

addition operator: +
Add the two operands.

subtraction amd negation operator: −
Evaluates to the first argument minus the second, and also may be used as unary minus.

multiply operator: ∗
Multiply the two operands.

divide operator: /
The first operand divided by the second.

3.16. PLOTS, VECTORS AND EXPRESSIONS 173

modulo operator: %
This operates in the manner of the C fmod function, returning the remainder. That is, for x%y,
the value of x−i∗y is returned for some integer i such that the result has the same sign of x and
magnitude less than the magnitude of y. An error is indicated if y is zero. If x or y is complex,
the magnitudes are used in the division.

power operator: ˆ or ∗∗
Evaluates to the first operand raised to the power of the second.

and operator: & or && or and
Evaluates to 1 if both operands are non-zero, 0 otherwise.

or operator: | or || or or
Evaluates to 1 if either of the two operands is nonzero, 0 otherwise.

not operator: ˜ or ! or not
Evaluates to 1 if the operand is 0, 0 otherwise.

greater-than operator: > or gt
Evaluates to 1 if the first operand is greater than the second, 0 otherwise.

greater-than-or-equal operator: >= or ge
Evaluates to 1 if the first operand is greater than or equal to the second, 0 otherwise.

less-than operator: < or lt
Evaluates to 1 if the first argument is less than the second, 0 otherwise.

less-than-or-equal operator: <= or le
Evaluates to 1 if the first argument is less than or equal to the second, 0 otherwise.

not-equal operator: <> or ! = or ne
Evaluates to 1 if the two operands are not equal, 0 otherwise.

equal operator: = or == or eq
Evaluates to 1 if both operands are equal, 0 otherwise.

ternary conditional operator: expr ? expr1 : expr2
If expr evaluates nonzeor (true), the result of the evaluation of expr1 is returned. Otherwise, the
result of evaluating expr2 is returned. For Example:

let v = (a == 2) ? v(1) : v(2)

This will set v to v(1) if vector a is equal to 2, v to v(2) otherwise.

comma operator: ,
The notation a,b refers to the complex number with real part a and imaginary part b. Such a
construction may not be used in the argument list to a macro function, however, since commas
are used to separate the arguments and parentheses may be ignored. The expression a + j(b) is
equivalent. The comma does not behave as an operation (return a value) as it does in C.

The logical operations are & (and), | (or), ˜ (not), and their synonyms. A nonzero operand is
considered “true”. The relational operations are <, >, <=, >=, =, and <> (not equal), and their
synonyms. If used in an algebraic expression they work like they would in C, producing values of 0 or 1.
The synonyms are useful when < and > might be confused with IO redirection (which is almost always).

174 CHAPTER 3. THE WRSPICE USER INTERFACE

expression terminator: ;
The expression parser will terminate an expression at a semicolon. This can be used to enforce
tokenization of expression lists, however it will also terminate command parsing if surrounded by
white space.

Vectors may be indexed by value[index] or value[low,high].

The first notation refers to the index ’th element of value. The second notation refers to all of the
elements of value which fall between the high’th and the low ’th element, inclusive. If high is less than
low, the order of the elements in the result is reversed. Note that a complex index will have the same
effect as using the real part for the lower value and the imaginary part for the upper, since this is the way
the parser reads this expression. Multi-dimensional vectors are referenced as Vec[indN][indN-1]...[ind0],
where each of the indI can be a range, or single value. The range must be within the vector’s spanning
space. If fewer than the vector’s dimensions are specified, the resulting object is a sub-dimensional
vector.

Finally, there is the ran operator: value1 [[value2]] or value[[low,high]].

The first notation refers to all the elements of value1 for which the element of the corresponding scale
equals value2. The second notation refers to all of the elements of value for which the corresponding
elements of the scale fall between high and low, inclusive. If high is less than low, the order of the
elements in the result is reversed.

3.16.8 Math Functions

There are a number of built-in math functions which take and return vectors. Generally, these functions
operate on the supplied vector term-by-term, returning a vector of the same length as that given.

The pre-defined functions available are listed below. In general, all operations and functions will
work on either real or complex values, providing complex data output when necessary.

In addition, there are a number of HSPICE compatibility functions available, described in the fol-
lowing section.

It should be noted that the mathematics subsystem used to evaluate expressions in voltage/current
sources is completely different. In that subsystem, functions take real valued scalars as input. Although
many of the same functions are available in both systems, the correspondence is not absolute.

abs(vector)
Each point of the returned vector is the absolute value of the corresponding point of vector . This
is the same as the mag function.

acos(vector)
Each point of the returned vector is the arc-cosine of the corresponding point of vector . This and
all trig functions operate with radians unless the units variable is set to degrees.

acosh(vector)
Each point of the returned vector is the arc-hyperbolic cosine of the corresponding point of vector .
This and all trig functions operate with radians unless the units variable is set to degrees.

asin(vector)
Each point of the returned vector is the arc-sine of the corresponding point of vector . This and all
trig functions operate with radians unless the units variable is set to degrees.

3.16. PLOTS, VECTORS AND EXPRESSIONS 175

asinh(vector)
Each point of the returned vector is the arc-hyperbolic sine of the corresponding point of vector .
This and all trig functions operate with radians unless the units variable is set to degrees.

atan(vector)
Each point of the returned vector is the arc-tangent of the corresponding point of vector . This
and all trig functions operate with radians unless the units variable is set to degrees.

atanh(vector)
Each point of the returned vector is the arc-hyperbolic tangent of the corresponding point of vector .
This and all trig functions operate with radians unless the units variable is set to degrees.

cbrt(vector)
Each point of the returned vector is a cube root of the corresponding point of vector .

ceil(vector)
This function returns the smallest integer greater than or equal to the argument, in the manner
of the C function of the same name. If the argument is complex, the operation is performed on
both components, with the result being complex. This operation is performed at each point in the
given vector.

cos(vector)
Each point of the returned vector is the cosine of the corresponding point of vector . This and all
trig functions operate with radians unless the units variable is set to degrees.

cosh(vector)
Each point of the returned vector is the hyperbolic cosine of the corresponding point of vector .
This and all trig functions operate with radians unless the units variable is set to degrees.

db(vector)
Each point of the returned vector is the decibel value (20 * log10(mag)) of the corresponding
point of vector.

deriv(vector)
This calculates the derivative of the given vector, using numeric differentiation by interpolating a
polynomial. However, it may be prone to numerical errors, particularly with iterated differentia-
tion. The implementation only calculates the derivative with respect to the real component of that
vector’s scale. The polynomial degree used for differentiation can be specified with the dpolydegree
variable. If dpolydegree is unset, the value taken is 2 (quadratic). The valid range is 0–7.

erf(vector)
Each point of the real returned vector is the error function of the corresponding real point of vector.
Unlike most of the functions, this function operates only on the real part of a complex argument,
and always returns a real valued result.

erfc(vector)
Each point of the real returned vector is the complementary error function of the corresponding
real point of vector. Unlike most of the functions, this function operates only on the real part of a
complex argument, and always returns a real valued result.

exp(vector)
Each point of the returned vector is the exponentiation (ex) of the corresponding point of vector .

fft(vector)
The fft function returns the Fourier transform of vector , using the present scale of vector. The

176 CHAPTER 3. THE WRSPICE USER INTERFACE

scale should be linear and monotonic. The length is zero-padded to the next binary power. Only the
real values are considered in the transform, so that the negative frequency terms are the complex
conjugates of the positive frequency terms. The negative frequency terms are not included in the
(complex) vector returned. A scale for the returned vector is also generated and linked to the
returned vector.

floor(vector)
This function returns the largest integer less than or equal to the argument, in the manner of
the C function of the same name. If the argument is complex, the operation is performed on
both components, with the result being complex. The operation is performed at each point of the
argument.

gamma(vector)
This function returns the gamma value of the real argument (or the real part of a complex argu-
ment), returning real data.

ifft(vector)
The ifft function returns the inverse Fourier transform of vector , using the present scale of vector .
The scale should be linear and monotonically increasing, starting at 0. Negative frequency terms
are assumed to be complex conjugates of the positive frequency terms. The length is zero-padded
to the next binary power. A scale for the returned vector is also generated and linked to the
returned vector. The returned vector is always real.

im(vector)
Each point of the real returned vector is the imaginary part of the corresponding point of the given
vector . This function can also be calld as “imag”.

int(vector)
The returned value is the nearest integer to the argument, in the manner of the C rint function.
If the argument is complex, the operation is performed on each component with the result being
complex. The operation is performed at each point in the argument.

integ(vector)
The returned vector is the (trapezoidal) integral of vector with respect to the vector ’s scale (which
must exist).

interpolate(vector)
This function takes its data and interpolates it onto a grid which is determined by the default
scale of the currently active plot. The degree is determined by the polydegree variable. This is
useful if the argument belongs to a plot which is not the current one. Some restrictions are that
the current scale, the vector ’s scale, and the argument must be real, and that either both scales
must be strictly increasing or strictly decreasing if they differ.

This function is used when operating on vectors from different plots, where the scale may differ.
For example, the x-increment may be different, or the points may correspond to internal time
points from transient analysis rather than the user time points. Without interpolation, operations
are generally term-by-term, padding when necessary. This result is probably not useful if the scales
are different.

For example, the correct way to print the difference between a vector in the current plot and a
vector from another plot with a different scale would be

print v(2) - interpolate(tran2.v(2))

3.16. PLOTS, VECTORS AND EXPRESSIONS 177

j(vector)
Each point of the returned vector is the corresponding point of vector multiplied by the square
root of -1.

j0(vector)
Each point of the real returned vector is the Bessel order 0 function of the corresponding real point
of vector. Unlike most of the functions, this function operates only on the real part of a complex
argument, and always returns a real valued result.

j1(vector)
Each point of the real returned vector is the Bessel order 1 function of the corresponding real point
of vector. Unlike most of the functions, this function operates only on the real part of a complex
argument, and always returns a real valued result.

jn(n, vector)
Each point of the real returned vector is the Bessel order n function of the corresponding real point
of vector, with n the truncated integer value of the imaginary part of vector.

Recall that for most math function, comma argument separators are interpreted as the comma
operator

a,b = (a + j*b)

which resolves to a single complex value. Thus, since scalars are extended to vectors by replicating
the value, on calling this function as, for example, “jn(v,3)” where v is a real vector, the return
will be j3(v) for each element of v.

If vector is real, the effective value of n is 0.

length(vector)
This function returns the scalar length of vector .

ln(vector)
Each point of the returned vector is the natural logarithm of the corresponding point of vector.

log(vector)
Each point of the returned vector is the base-10 logarithm of the corresponding point of vector.

log10(vector)
Each point of the returned vector is the natural logarithm of the corresponding point of vector
(same as ln).

Warning: in releases prior to 3.2.15, the log function returned the base-10 logarithm (as in
Berkeley SPICE3). This was changed in 3.2.15 for compatibility with device simulation models
intended for HSPICE.

mag(vector)
Each point of the real returned vector is the magnitude of the corresponding point of vector.

mean(vector)
This function returns the (scalar) mean value of the elements in the argument.

norm(vector)
Each point of the returned vector is the corresponding point of the given vector multiplied by the
magnitude of the inverse of the largest value in the given vector. The returned vector is therefor
normalized to 1 (i. e, the largest magnitude of any component will be 1).

178 CHAPTER 3. THE WRSPICE USER INTERFACE

ogauss(vector)
This function returns a real vector which contains normally distributed random values. The stan-
dard deviation and mean are set by the corresponding real and imaginary coefficients of vector
term-by-term, and the mean is zero if vector is real. The random number sequence can be reset
with the seed command.

ph(vector)
Each point of the real returned vector is the phase of the corresponding point of vector, expressed
in radians.

pos(vector)
This function returns a real vector which is 1 if the corresponding element of the argument has a
non-zero real part, and 0 otherwise.

re(vector)
Each point of the real returned vector is the real part of the corresponding point of vector. The
function can also be called as “real”.

rms(vector)
This function integrates the magnitude-squared of vector over the vector ’s scale (using trapezoidal
integration), divides by the scale range, and returns the square root of this result. If the vector
has no scale, the square root of the sum of the squares of the elements is returned.

rnd(vector)
This function returns a vector which contains random values between 0 and the corresponding
element of vector . If vector is complex then the random value is also complex. The random
number sequence can be reset with the seed command.

sgn(vector)
Each value of the output vector is 1, 0, or -1 according to whether the corresponding value of the
input vector is larger than 0, equal to zero, or less than 0. The vector can be complex or real.

sin(vector)
Each point of the returned vector is the sine of the corresponding point of vector . This and all trig
functions operate with radians unless the units variable is set to degrees.

sinh(vector)
Each point of the returned vector is the hyperbolic sine of the corresponding point of vector . This
and all trig functions operate with radians unless the units variable is set to degrees.

sqrt(vector)
Each point of the returned vector is the square root of the corresponding point of vector.

sum(vector)
This function returns the (scalar) sum of the elements of vector.

tan(vector)
Each point of the returned vector is the tangent of the corresponding point of vector . This and all
trig functions operate with radians unless the units variable is set to degrees.

tanh(vector)
Each point of the returned vector is the hyperbolic tangent of the corresponding point of vector .
This and all trig functions operate with radians unless the units variable is set to degrees.

3.16. PLOTS, VECTORS AND EXPRESSIONS 179

unitvec(vector)
This function returns a real vector consisting of all 1’s, with length equal to the magnitude of the
first element of the argument.

vector(vector)
This function returns a vector consisting of the integers from 0 up to the magnitude of the first
element of its argument.

y0(vector)
Each point of the real returned vector is the Neumann order 0 function of the corresponding real
point of vector. Unlike most of the functions, this function operates only on the real part of a
complex argument, and always returns a real valued result.

y1(vector)
Each point of the real returned vector is the Neumann order 1 function of the corresponding real
point of vector. Unlike most of the functions, this function operates only on the real part of a
complex argument, and always returns a real valued result.

yn(n, vector)
Each point of the real returned vector is the Neumann order n function of the corresponding real
point of vector, with n the truncated integer value of the imaginary part.

Recall that for most math function, comma argument separators are interpreted as the comma
operator

a,b = (a + j*b)

which resolves to a single complex value. Thus, since scalars are extended to vectors by replicating
the value, on calling this function as, for example, “yn(v,3)” where v is a real vector, the return
will be y3(v) for each element of v.

If vector is real, the effective value of n is 0.

In addition, the following functions are available, for compatibility with HSPICE.

These functions differ from other math functions in that they take multiple comma-separated ar-
guments, Other math functions internally accept a single argument, but if there are multiple comma-
separated terms, they will be collapsed into a single argument through evaluation of the comma operator

a,b = (a + j*b)

which yields a complex value. This will not be true in the functions listed below – the comma really
means separate arguments in this case.

The first group of functions are equivalent to the HSPICE Monte Carlo functions that are called in
.param lines in HSPICE. In WRspice, these are regular math functions.

These functions will return mean values unless enabled. They are enabled while in Monte Carlo
analysis, or if the random variable is set, either from the command line or from a .options line in a
circuit file.

unif(nom, rvar)
Uniform relative random value function.

This returns a vector the same length as nom, complex or real as nom. If the length of rvar is less
than the length of nom, rvar is extended by replicating the highest index value of rvar.

180 CHAPTER 3. THE WRSPICE USER INTERFACE

If we are not running Monte Carlo analysis, and the random variable is not set, the return vector is
the same as nom (no random values are generated). Otherwise the return vector contains uniformly
distributed random values, each in the range [nom - nom*rvar , nom + nom*rvar] term-by-term.

Below, random is a pseudo-function that returns a random number between -1 and 1.

If nom is complex and var is complex:
out[i].real = nom[i].real*(1 + random()*rvar[i].real)

out[i].imag = nom[i].imag*(1 + random()*rvar[i].imag)

If nom is complex and var is real:
out[i].real = nom[i].real*(1 + random()*rvar[i])

out[i].imag = nom[i].imag*(1 + random()*rvar[i])

If nom is real and var is complex:
out[i] = nom[i].real*(1 + random()*rvar[i].real)

If nom is real and var is real:
out[i] = nom[i]*(1 + random()*rvar[i])

aunif(nom, var)
Uniform absolute random value function.

This returns a vector the same length as nom, complex or real as nom. If the length of var is less
than the length of nom, var is extended by replicating the highest index value of var .

If we are not running Monte Carlo analysis, and the random variable is not set, the return vector
is the same as nom (no random values are generated). Otherwise The return vector contains
uniformly distributed random values, each in the range [nom - var , nom + var] term-by-term.

Below, random is a pseudo-function that returns a random number between -1 and 1.

If nom is complex and var is complex:
out[i].real = nom[i].real + random()*var[i].real

out[i].imag = nom[i].imag + random()*var[i].imag

If nom is complex and var is real:
out[i].real = nom[i].real + random()*var[i]

out[i].imag = nom[i].imag + random()*var[i]

If nom is real and var is complex:
out[i] = nom[i].real + random()*var[i].real

If nom is real and var is real:
out[i] = nom[i] + random()*var[i]

gauss(nom, rvar , sigma)
Gaussian relative random number generator.

This returns a vector the same length as nom, complex or real as nom. If the length of rvar is less
than the length of nom, rvar is extended by replicating the highest index value of rvar . Only the
zero’th (real) component of sigma is used.

If fewer than three arguments are given, this reverts to the original WRspice gauss function (now
called ogauss).

If we are not running Monte Carlo analysis, and the random variable is not set, the return vector is
the same as nom (no random values are generated). Otherwise the return vector contains gaussian-
distributed random values. The (scalar) sigma value gives the specified sigma of the rvar data,
generally 1 or 3.

3.16. PLOTS, VECTORS AND EXPRESSIONS 181

Below, the pseudo-function gauss returns a gaussian random number with zero mean and unit
standard deviation.

If nom is complex and var is complex:
out[i].real = nom[i].real*(1 + gauss()*rvar[i].real/sigma)

out[i].imag = nom[i].imag*(1 + gauss()*rvar[i].imag/sigma)

If nom is complex and var is real:
out[i].real = nom[i].real*(1 + gauss()*rvar[i]/sigma)

out[i].imag = nom[i].imag*(1 + gauss()*rvar[i]/sigma)

If nom is real and var is complex:
out[i] = nom[i].real*(1 + gauss()*rvar[i].real/sigma)

If nom is real and var is real:
out[i] = nom[i]*(1 + gauss()*rvar[i]/sigma)

agauss(nom, var , sigma)
Gaussian absolute random number generator.

This returns a vector the same length as nom, complex or real as nom. If the length of var is less
than the length of nom, var is extended by replicating the highest index value of var . Only the
zero’th (real) component of sigma is used.

If we are not running Monte Carlo analysis, and the random variable is not set, the return vector
is the same as nom (no random values are generated). Otherwise the return vector contains
gaussian-distributed random values. The (scalar) sigma value gives the specified sigma of the var
data, generally 1 or 3.

Below, the pseudo-function gauss returns a gaussian random number with zero mean and unit
standard deviation.

If nom is complex and var is complex:
out[i].real = nom[i].real + gauss()*var[i].real/sigma

out[i].imag = nom[i].imag + gauss()*var[i].imag/sigma

If nom is complex and var is real:
out[i].real = nom[i].real + gauss()*var[i]/sigma

out[i].imag = nom[i].imag + gauss()*var[i]/sigma

If nom is real and var is complex:
out[i] = nom[i].real + gauss()*var[i].real/sigma

If nom is real and var is real:
out[i] = nom[i] + gauss()*var[i]/sigma

limit(nom, var)
Random limit function.

This returns a vector the same length as nom, complex or real as nom. If the length of var is less
than the length of nom, var is extended by replicating the highest index value of var .

If we are not running Monte Carlo analysis, and the random variable is not set, the return vector
is the same as nom (no random values are generated). Otherwise the return vector contains either
nom + var or nom - var determined randomly, term-by-term.

If nom is complex and var is complex:
out[i].real = nom[i].real +/- var[i].real randomly
out[i].imag = nom[i].imag +/- var[i].imag randomly

182 CHAPTER 3. THE WRSPICE USER INTERFACE

If nom is complex and var is real:
out[i].real = nom[i].real +/- var[i] randomly
out[i].imag = nom[i].imag +/- var[i] randomly

If nom is real and var is complex:
out[i] = nom[i].real +/- var[i].real randomly

If nom is real and var is real:
out[i] = nom[i] +/- var[i] randomly

The remaining functions are for HSPICE compatibility, but are not exclusive to the HSPICE Monte
Carlo analysis. These also have multiple arguments.

pow(x , y)
This returns a real or complex vector the same length as x . If the length of y is less than the
length of x , y is extended by replicating the highest index value of y .

This returns a vector containing xy computed using complex values, term-by-term, however if y is
real, is is truncated to an integer value.

If x is complex and y is complex:
out = xy (same as ˆ operator)

If x is complex and y is real:
out = x(int)y (same as ˆ operator, but y is truncated to integer)

If x is real and y is complex:
out = xy (same as ˆ operator)

If x is real and y is real:
out = x(int)y (same as ˆ operator, but y is truncated to integer)

pwr(x , y)
This returns a real vector the same length as x . If the length of y is less than the length of x , y is
extended by replicating the highest index value of y .

If x is complex and y is complex:
out[i] = (sign of x[i].real)(mag(x[i]) ˆ y[i].real)

If x is complex and y is real:
out[i] = (sign of x[i].real)(mag(x[i]) ˆ y[i])

If x is real and y is complex:
out[i] = (sign of x[i].real)(abs(x[i]) ˆ y[i].real)

If x is real and y is real:
out[i] = (sign of x[i])(abs(x[i]) ˆ y[i])

sign(x , y)
This returns a vector the same length as x , complex or real as x . If the length of y is less than the
length of x , y is extended by replicating the highest index value of y .

If x is complex and y is complex:
out[i].real = (sign of y[i].real)abs(x[i].real)
out[i].imag = (sign of y[i].imag)abs(x[i].imag)

3.16. PLOTS, VECTORS AND EXPRESSIONS 183

If x is complex and y is real:
out[i].real = (sign of y[i])abs(x[i].real)
out[i].imag = (sign of y[i])abs(x[i].imag)

If x is real and y is complex:
out[i] = (sign of y[i].real)abs(x[i])

If x is real and y is real:
out[i] = (sign of y[i])abs(x[i])

3.16.9 Expression Lists

Some commands, such as print and plot, take expression lists as arguments. In the simplest form, an
expression list is a space-separated list of vectors. In the general form, an expression list is a sequence
of expressions involving vectors. The parsing is context dependent, i.e., white space does not necessarily
terminate an expression. This leads to ambiguities. For example, the command

plot v(2) -v(3)

can be interpreted as two vectors, or as a single vector representing the difference. WRspice will assume
the latter.

There are several ways to ensure that the former interpretation prevails. Double quotes may be used
to separate the tokens, but white space must precede the leading quote mark:

plot v(2) "-v(3)"

Parentheses can also be used to enforce precedence, with white space ahead of the opening paren, as:

plot v(2) (-v(3))

In addition, the expression termination character, a semicolon, can be used. This must be hidden from
the shell, for example with a backslash:

plot v(2)\; -v(3)

There are situations where the name of a vector is so strange that it can’t be accessed in the usual
way. For example, if a list-type special variable is saved with the save command, the plot may contain
a vector with a name like “@b1[ic,0]”. To access this vector, one can’t simply type the name, since
the name is an expression which will actually lead to an evaluation error. One has to fool the expression
parser into taking the name as a string. This will happen if the name is not the lead in a token and the
name is double quoted. If the name is the leading part of a token, it should be backslash-double-double
quoted.

To use the double quotes to enforce string interpretation, one should have, for example,

plot v(2) \""@b1[ic,0]"\"

The extra set of quotes is needed only if the string is at the start of a token, thus

plot 2*"@b1[ic,0]"

184 CHAPTER 3. THE WRSPICE USER INTERFACE

is ok. This may be a bit confusing, but this feature is seldom used, and a bit of experimentation will
illustrate the behavior.

These commands can accept the plotname.vecname notation, where either field may be the wildcard
“all”. If the plotname is all, matching vectors from all plots are specified, and if the vector name is
all, all vectors in the specified plots are referenced. The constants plot is never matched by a plot
wildcard. Note that you may not use binary operations on expressions involving wildcards - it is not
obvious what “all + all” should denote, for instance.

3.16.10 Set and Let

Novice WRspice users may be confused by the different interpretations of shell variables and vectors.
Any variable can be defined with the set command, and undefined with unset. If defined, the value of
the variable is the string, if given. For example, if

set a = 10*2

is entered, the value of a (obtained as $a) is the string “10*2” and not the integer 20.

Some internally used variables have boolean values, such as

set unixcom

which if set causes certain modes or functions to be active.

Vectors, however, always have numeric values, and can be created with let and compose, and deleted
with unlet. If one enters

let a = 10*2, or more simply
a = 10*2

the value of the vector a is 20. Note that the “let” is generally optional when assigning vectors.

At the risk of adding confusion, it should be noted that in recent WRspice releases, the set command
can also be used to assign values to vectors. The syntax

set &vector = value

is equivalent to

let vector = value

Vectors can be set to shell variables, in which case they take on the interpreted numerical values.
For example,

set a=10*2

b = $a

would assign the string 10*2 to the shell variable a, but the vector b would contain the value 20.

The inputs to most commands are vectors, however some commands, such as echo, substitute for
shell variables. For example,

3.16. PLOTS, VECTORS AND EXPRESSIONS 185

set a = "foo"

set b = "bar"

echo ab

would print “foobar”.

Shell variables are expanded by echo, and in WRspice input when sourced. If the value of a vector
is needed in shell expansion, then the special prefix $& should be added. This tells the shell interpreter
that the following symbol is a vector, to be replaced by its value. For example,

let a = 2.0e-2

echo $&a

will print 2.00000e-2. However

let a = 2.0e-2

echo $a

would give an error message (unless a is also a shell variable), and

let a = 2.0e-2

echo a

would print “a”.

Double quotes will cause multiple tokens to be taken as one, for example

set a = "a string"

will set a accordingly, whereas

set a = a string

will set shell variable a to “a” and shell variable string to boolean true.

Single quotes do about the same thing, but suppress shell variable expansion. For example:

set a = foo

set b = bar

echo $a $b

and

set a = foo

set b = bar

echo "$a $b"

would print “foo bar”, whereas

set a = foo

set b = bar

echo ’$a $b’

186 CHAPTER 3. THE WRSPICE USER INTERFACE

would print “$a $b”.

In the present version, $ can not be nested. For example,

set a = foo

set b = bar

set c = ’ab’

echo $c

prints “ab”, not “foobar”. However,

set a = foo

set b = bar

set c = ab

echo $c

does print “foobar” (the value of c).

Shell variables that are lists are referenced with zero-based index, for example

set a = (aa bb cc)

echo $a[1]

prints “bb”.

Actually, what can be in the brackets is [lo-hi], where lo defaults to 0 and hi defaults to the length
- 1. If lo > hi , the list is reversed.

If the reference is to a vector, as in

compose a values .1 .2 .3

echo $&a[1]

the index is also zero-based, so “2.0000e-1” is printed.

The [] subscripting is interpreted a little differently by the shell and by the vector parser. If a
variable starts with $, as in $&value[], the [] is interpreted by the shell parser. In this case, the
terms inside [] must be interpreted as shell variables, with the (optional) low -high notation. In a vector
expression, i. e. , one using value[], the terms inside [] will be interpreted as vector expressions, with
the optional low ,high notation. Thus,

if (value[index] = 0)

is perfectly legal for vectors value and index. Also, equivalently,

if ($&value[$&index] = 0)

is also ok, though not as efficient. However

if ($&value1[index] = 0)

3.17. BATCH MODE 187

is an error, as the shell parser does not know that index is a vector.

Shell variables can be used freely in vector expressions, however one must keep in mind how the
variables are interpreted. During parsing, the shell variables are evaluated, and their values put back
into the expression as constants. Then the expression is evaluated as a vector expression.

3.17 Batch Mode

Although WRspice is intended to be an interactive program, batch mode, similar to SPICE2, is supported.
If WRspice is invoked with the -b command line option, it will process the input circuit files in batch
mode. The files are input on the command line, and if no files are listed, the standard input is read.
Most of the control lines recognized by SPICE2 will be handled, including .plot, .print, and .four.
These lines are more or less ignored in interactive mode, but provide the traditional SPICE2 behavior
in batch mode.

For normal analysis, output is sent to the standard output, in the form of ASCII plots and print
output as directed by .plot/.print lines, plus additional information about the run, somewhat similar
to SPICE2 but less verbose by default. The batch mode output format and content can be controlled
with the option keywords described in 4.9.7. If the input file is a margin or operating range analysis file,
a result file will be produced (as in interactive mode), however there will be little or no standard output
other than printing from echo commands within the analysis scripts.

If the -r command line option is used (-r filename), a plot data file will be produced. This will also
be true if specified with the post option in the circuit description.

Batch node is non-graphical, and plots produced from .plot lines use the line printer format of
ancient times. Saving output in a rawfile or CSDF file for later viewing with graphical WRspice or
another viewing program is recommended.

The input files provided may have .newjob lines, which logically divide the input into two or more
separate circuit decks. Each circuit deck is processed in order. This is one way to run multiple simulations
in a single batch job.

There is also a “server” mode which is similar to batch mode, which is invoked with the -s command
line option. This is intended for use in remote SPICE runs. Input is taken only from the standard input,
and output is exclusively to the standard output. The output is either in rawfile or margin analysis
format, and inappropriate command line options such as -r, -b are ignored. There is probably no
reason for a user to invoke this mode directly.

3.17.1 Scripts and Batch Mode

Scripts can be written to automate a large number of runs on a circuit, saving the output in a sequence
of rawfiles. Typically this may be done in the background, using WRspice in batch mode. This section
addresses some of the subtleties of using scripts in batch mode.

Any script, or circuit file containing a script, can be sourced by WRspice when started in batch mode
(-b option given). However, the batch mode behavior will not be evident unless 1) the sourced file
(and any inclusions) contains a circuit description, and 2) no analysis command is run on the circuit
from a .control block in the same file (plus inclusions). That is, after executing the .control lines,
if WRspice finds that an analysis has already been run, such as from a tran command in the .control

block, WRspice will simply exit rather than run the circuit again in batch mode. Here, by “batch mode”,
we mean the usual plots, prints, and other data output that would occur for a pure circuit file. When

188 CHAPTER 3. THE WRSPICE USER INTERFACE

the circuit was run from the .control block, all of this output is absent, and .plot, .print and similar
lines are ignored as in interactive mode.

If the input file contains a circuit description, recall that an .exec block in the same (logical) file
will be executed before the circuit is parsed, and therefor can be used to set shell variables which can
affect the circuit. For example:

* RC Test

R1 1 0 1k

c1 1 0 $cval

i1 0 1 pulse 0 1m 10p 10p

.plot tran v(1)

.tran 10n 1u

.exec

set cval="1n"

.endc

The circuit will run in batch mode, with the capacitance value provided from the .exec script. This
example is trivial, but conceptually the .exec script can be far more elaborate, configuring the circuit
according to an external data file, for example.

Often, it is more convenient to provide our own analysis control in the input file. For example, add
a trivial .control block to the example above.

* RC Test

R1 1 0 1k

c1 1 0 $cval

i1 0 1 pulse 0 1m 10p 10p

.plot tran v(1)

.tran 10n 1u

.exec

set cval="1n"

.endc

.control

run

.endc

When run with the -b option, there is no “batch mode” output. Further, if the -r option was used
to generate a plot data file, the file would not be created. The presence of an analysis command (“run”)
in the .control block inhibits the “batch mode” behavior. The analysis was run, but we forgot to save
any data. One must add an explicit write command to save vectors to a file for later review. One
could also add print and plot commands. Since there is no graphics, the plot command reverts to the
asciiplot as used in batch mode output, so is not of much value. Note that the plot command and
.plot control line have similar but different syntax, one should avoid confusing the two.

Again, our example is trivial, but the .control block can implement complex procedures and run
sequences, provide post-simulation data manipulation, and perform other tasks.

3.18. LOADABLE DEVICE MODULES AND VERILOG-A SUPPORT 189

At the start of every analysis command execution, the circuit is reset, meaning that the input is
re-parsed. This will not happen with the first analysis command found in a .control block, as the
circuit is already effectively in the reset state. However, on subsequent analysis commands, the .exec

block will be re-executed, and the circuit will be re-parsed. Chances are, if we are running more than
one simulation, we would like to change the parameter value. Consider the example:

* RC Test

R1 1 0 1k

c1 1 0 $cval

i1 0 1 pulse 0 1m 10p 10p

.tran 10n 1u

.exec

if $?cval = 0

set cval="1n"

endif

.endc

.control

run

write out1n.csdf

set cval="2n"

run

write out2n.csdf

.endc

We are now running two transient analyses, with different capacitance values. The first change is
within the .exec block. The set command will be applied only if the cval variable is unset, i.e., it will
be set once only, when the file is first read. Instead, ahead of the second run command in the .control

block, we use the set command to provide a new value for cval. This will update the circuit as the
circuit is re-parsed in the second run command. Without the change to the .exec block, the evaluation
of the .exec block in the second run command would override our new cval value.

3.18 Loadable Device Modules and Verilog-A Support

It is possible to load device models into WRspice at run time, through use of “loadable device modules”.
These are dynamically loaded libraries containing the device model description in a form which can be
read into a running WRspice process. This capability opens up some interesting possibilities for future
versions of WRspice in how new device models are distributed. It also gives the user, at least in principle,
the ability to generate and use custom device models in WRspice.

Initial support for this important new feature is available in all releases except for Microsoft Win-
dows. Support under Windows is available by request. Microsoft support requires partitioning of the
wrspice.exe executable into separate exe and dll files. The dll version will be supplied on request, how-
ever the main distribution won’t make this change unless there is customer interest. Contact Whiteley
Research for more information.

Loadable device modules are specific to a particular release number of WRspice, and to the operating
system. Since the interface may change, user-created loadable modules need to be rebuilt for new releases
of WRspice. This will be relaxed in future releases, when the interface stabilizes.

190 CHAPTER 3. THE WRSPICE USER INTERFACE

Loadable device modules can be loaded into WRspice in two ways.

1. On startup, WRspice will look for loadable modules in the devices directory under the startup di-
rectory (i.e., /usr/local/share/xictools/wrspice/startup/devices if installed in the default
location). Modules found in this directory will be loaded automatically.

If the -m command line option is given, the automatic loading of device modules found in the
devices directory will be skipped.

2. The devload command can be used to load a module from the command prompt or from a script.
The syntax is

devload [path to loadable module]

If no argument is given, a list of the presently loaded modules is printed.

Once a module is loaded, it can’t presently be unloaded, however loading a module with the same
device key letter and model level as a previously loaded module will replace the previously loaded module.

If a loadable module has the same device key character and model level as a built-in device, the loaded
device will not be accessible, and a warning is issued. The built-in devices always have precedence.

The devkit directory in the WRspice installation location (/usr/local/share/xictools/wrspice
is the default) will provide the tools needed to build loadable device modules.

The present release provides support for building loadable modules from Verilog-A model source.
Many new compact device models have been released in this format, as it is (theoretically) portable to
all simulators. Most commercial simulators now have this capability.

This capability is available on all platforms, however support for loadable modules under Microsoft
Windows is available only on request.

The devkit/README file provides instructions on how to build a module, and there are several ex-
amples.

To build modules from Verilog-A source, the open-source ADMS 2.3.0 (or later) package must be
installed on the system. This is available from http://sourceforge.net/projects/mot-adms. The
system should also provide gcc/g++, make, and other standard tools for program development.

Under Microsoft Windows, the ADMS package can be built with Cygwin (www.cygwin.com). MinGW
(www.mingw.org) is required for compiling the modules.

3.19 The WRspice Daemon and Remote SPICE Runs

WRspice can be accessed and run from a remote system for asynchronous simulation runs, for assistance
in computationally intensive tasks such as Monte Carlo analysis, and as a simulator for the Xic graphical
editor. This is made possible through a daemon (background) process which controls WRspice on the
remote machine. The daemon has the executable name “wrspiced”, and should be run as a root process
on the remote machine. Typically, this can be initiated in the system startup script, or manually. Of
course, the remote machine must have a valid WRspice executable present.

The wrspiced program is described in B.4.

Chapter 4

WRspice Commands

When a line is entered, it is interpreted as one of several things. First, it may be an alias, in which case
the line is replaced with the result after alias substitution, and the line is re-parsed. Second, it may be
the name of a codeblock, which is a user-defined command obtained from a script file, in which case the
codeblock is executed. Third, it may be a pre-defined command, in which case it is executed. Fourth, it
may be an assignment statement, which consists of a vector name, an ‘=’ symbol, and an expression, in
which case it is executed as if it were preceded by the word “let”. Fifth, it may be the name of a circuit
file, in which case it is loaded as if with a source command, or it may be the name of a command script
– WRspice searches the current sourcepath (search path) for the file and executes it when it is found.
The effect of this is identical to the effect of “source file”, except that the variables argc and argv are
set. Finally, it may be a UNIX command, in which case if the variable unixcom is set, it is executed as
though it were typed to the operating system shell.

The following table lists all built-in commands understood by WRspice.

Control Structures
cdump Dump control structures for debugging
strcmp Compare strings

User Interface Setup Commands
mapkey Create keyboard mapping
passwd Set update access password
setcase Check/set case sensitivity for name classes
setfont Set graphical interface fonts
setrdb Set X resources
update Save tool window configuration
wrupdate Download/install program updates

Shell Commands
alias Create alias
cd Change directory
echo Print string
echof Print string to file
history Print command history
pause Pause script execution
rehash Update command database
set Set a variable

191

192 CHAPTER 4. WRSPICE COMMANDS

shell Execute operating system commands
shift Shift argument list
unalias Destroy alias
unset Unset a variable
usrset Print list of internally used variables

Input and Output Commands
codeblock Manipulate codeblocks
dumpnodes Print node voltages and branch currents
edit Edit text file
listing List current circuit
load Read plot data from file
print Print vectors
sced Bring up Xic schematic editor
source Read circuit or script input file
write Write data to rawfile
xeditor Edit text file

Simulation Commands
ac Perform ac analysis
alter Change circuit parameter
aspice Initiate asynchronous run
cache Manipulate subcircuit/model cache
check Initiate range analysis
dc Initiate dc analysis
delete Delete watchpoint
destroy Delete plot
devload Load device module
devls List available devices
devmod Change device model levels
disto Initiate distortion analysis
dump Print circuit matrix
free Delete circuits and/or plots
jobs Check asynchronous jobs
loop Perform analysis over range
noise Initiate noise analysis
op Compute operating point
pz Initiate pole-zero analysis
reset Reset simulator
resume Resume run in progress
rhost Identify remote SPICE host
rspice Initiate remote SPICE run
run Initiate simulation
save List vectors to save during run
sens Initiate sensitivity analysis
setcirc Set current circuit
show List parameters
state Print circuit state
status Print trace status
step Advance simulator

4.1. CONTROL STRUCTURES 193

stop Specify stop condition
tf Initiate transfer function analysis
trace Set trace
tran Initiate transient analysis
where Print nonconvergence information

Data Manipulation Commands
compose Create vector
cross Vector cross operation
define Define a macro function
deftype Define a data type
diff Compare plots and vectors
display Print vector list
fourier Perform spectral analysis
let Create or assign vectors
linearize Linearize vector data
pick Create vector from reduced data
seed Seed random number generator
setplot Set current plot
setscale Assign scale to vector
settype Assign type to vector
spec Perform spectral analysis
undefine Undefine macro function
unlet Undefine vector

Graphical Output Commands
asciiplot Generate line printer plot
combine Combine plots
hardcopy Send plot to printer
iplot Plot during simulation
mplot Plot range analysis output
plot Plot simulation results
xgraph Plot simulation results using xgraph

Miscellaneous Commands
bug Submit bug report
help Enter help system
helpreset Clear help system cache
qhelp Print command summaries
quit Exit program
rusage Print resource usage
version Print program version

4.1 Control Structures

Control structures operate on expressions involving vectors, constants, and ($-substituted) shell vari-
ables. A non-zero result (of any element, if the length is greater than 1) indicates “true”. The following
control structures are available:

Although control structures are most commonly used in command scripts, they are also allowed from

194 CHAPTER 4. WRSPICE COMMANDS

the command line. While a block is active, the command prompt changes to one or more “>” characters,
the number of which represents the current depth into the control commands. As with a UNIX shell,
control structures can be used from the command line to repeat one or more commands.

repeat block

repeat [number]
statement
...
end

Execute the statements in the block defined by the repeat line and the corresponding end statement
number times, or indefinitely if no number is given. The number must be a constant, or a shell
variable reference that evaluates to a constant, which may be a vector reference in the $& form. A
vector name is not valid.

while block

while condition
statement
...
end

The while line, together with a matching end statement, defines a block of commands that are
executed while the condition remains true. The condition is an expression which is considered true
if it evaluates to a nonzero value, or if a vector, any component is nonzero. The test is performed
at the top of the loop, so that if the condition is initially false, the statements are not executed.

dowhile block

dowhile condition
statement
...
end

The dowhile line, together with a matching end statement, defines a block of commands that are
executed while the condition remains true. The condition is an expression which is considered
true if it evaluates to a nonzero value, or if a vector, any component is nonzero. Unlike the while
statement, the test is performed at the bottom of the loop – so that the loop executes at least
once.

foreach block

foreach var value ...
statement
...
end

4.1. CONTROL STRUCTURES 195

The foreach statement opens a block which will be executed once for each value given. Each time
through, the var will be set to successive values. After the loop is exited it will have the last value
that was assigned to it. The var can be accessed in the loop with the $var notation, i.e., it should
be treated as a shell variable, not a vector. This is set to each value as a text item.

if block

if condition
statement
...
else

statement
...
end

If the condition is non-zero then the first set of statements is executed, otherwise the second set.
The else and the second set of statements may be omitted.

label statement

label labelname

This defines a label which can be used as an argument to a goto statememt.

goto statement

goto label

If there is a label statement defining the label in the block or an enclosing block, control is transfered
there. If the goto is used outside of a block, the label must appear ahead of the goto (i.e., a forward
goto may occur only within a block). There is a begin macro pre-defined as “if 1” which may be
used if forward label references are required outside of a block construct.

continue statement

continue [number]

If there is a while, dowhile, foreach or repeat block enclosing this statement, the next iteration
begins immediately and control passes to the top of the block. Otherwise an error results. If a
number is given, that many surrounding blocks are continued. If there are not that many blocks,
an error results.

break statement

break [number]

If there is a while, dowhile, foreach, or repeat block enclosing this statement, control passes out
of the block. Otherwise an error results. If a number is given, that many surrounding blocks are
exited. If there are not that many blocks, an error results.

196 CHAPTER 4. WRSPICE COMMANDS

end statement

end

This statement terminates a block. It is an error for an end to appear without a matching if, while,
dowhile, foreach, or repeat statement. The keywords endif, endwhile, enddowhile, endforeach, and
endrepeat are internally aliased to end.

Control structures may be nested. When a block is entered and the input is from the keyboard, the
prompt becomes a number of >’s equalling the depth of blocks the user has entered. The current control
structures may be examined with the debugging command cdump.

4.1.1 The cdump Command

The cdump command prints out the contents of the currently active control structures. The command
takes no arguments. It is intended primarily for debugging.

4.1.2 The strcmp Command

The strcmp command is used for string comparison in control structures.

strcmp varname string1 string2

The value of the shell variable varname is set to a number that is greater than, equal to, or less than 0
according to whether string1 is lexically before, equal to, or after string2.

4.2 User Interface Setup Commands

These commands perform setup and control of aspects of the user interface, both graphical and non-
graphical.

Uset Interface Setup Commands
mapkey Create keyboard mapping
passwd Set update access password
setcase Check/set case sensitivity for name classes
setfont Set graphical interface fonts
setrdb Set X resources
update Save tool window configuration
wrupdate Download/install program updates

4.2.1 The mapkey Command

The mapkey command provides limited keyboard mapping support.

mapkey [-r [filename] | -w [filename] | keyname data]

4.2. USER INTERFACE SETUP COMMANDS 197

Only the keys that are used for command line editing are mappable. This is to account for “strange”
terminals that may not send the expected data when a key is pressed.

The following keys can be mapped:

Ctrl-A

Ctrl-D

Ctrl-E

Ctrl-K

Ctrl-U

Ctrl-V

Tab

Backspace

Delete

LeftArrow

RightArrow

UpArrow

DownArrow

Of these, the arrow keys and Delete are most likely to need remapping.

If no argument is given, the user is prompted to press each of these keys, and the internal map is
updated. After doing this, the keys should have their expected effect when pressed while entering a
WRspice command.

If “-w [filename]” is given, the present internal map will be saved in the named file, or “wrs keymap”
in the current directory if no filename is given.

If “-r [filename]” is given, the file will be read as a key mapping file, and the internal map will be
updated. The filename, if not given, defaults to “wrs keymap”. If no path is given, it will be found in
the current directory or the startup directory.

If “keyname data...” is given, a single key in the internal map can be updated. The format is the
same as the entries in the mapping file, i.e., one of the names above, followed by one or more hex bytes
of data. The bytes represent the stream sent when the named key is pressed, and will henceforth be
interpreted as the pressing of that key. The bytes should be in hex format, and the first byte of a
multi-byte sequence must be the Escape character (1b).

Example (from real life):

After installing the latest X-window system, suppose one finds that, when running WRspice in an
xterm window, the Delete key no longer deletes the character under the cursor in WRspice, but instead
injects some gibberish. There are three ways to fix this. The first two are specific to the xterm program,
and instruct the xterm to send the ASCII Del character when Delete is pressed, rather than use the
new default which is to send the VT-100 “delete character” string. The third method is to map this
string into the delete function in WRspice.

1. From the main xterm menu, find and click on the “Delete is DEL” entry. Usually, holding the
Ctrl key and clicking in the xterm with button 1 displays this menu.

2. Create a file named “XTerm” in your home directory, containing the line

*deleteIsDEL: true

3. In WRspice, type “mapkey” and follow the prompts. You can save the new map, and add a line to
a .wrspiceinit startup file to read it when WRspice starts.

198 CHAPTER 4. WRSPICE COMMANDS

4.2.2 The passwd Command

This will create a file named .wrpasswd in the user’s home directory, which is an encrypted file containing
the user name and password to the program distribution repository. The user name and password are
provided by Whiteley Research upon program or maintenance extension purchase, and must be supplied
in order to access the distribution point for updates. This command prompts the user for the user name
and password, and writes the .wrpasswd file. This needs to be done only once.

With the .wrpasswd file present, WRspice will check for the availability of updates when the program
starts, and alert the user if an update is available (this can be prevented by setting the nocheckupdate
variable in an initialization file).

The .wrpasswd file is also necessary for the wrupdate command to function.

4.2.3 The setcase Command

Syntax: setcase [flags]

This command sets or reports the case sensitivity of various name classes in WRspice. These classes
are:

Function names.
User-defined function names.
Vector names.
.PARAM names.
Codeblock names.
Node and device names.

The flags is a word consisting of letters, each letter corresponds to a class from the list above. If
lower-case, the class will be case-sensitive. If upper-case, the class will be case-insensitive.

The letters are f, u, v, p, c, and n corresponding to the classes listed above. By default, all WRspice

identifiers are case-insensitive, which corresponds to the string “FUVPCN”. Letters can appear in any
order, and unrecognized characters are ignored. Not all letters need be included, only those seen will be
used.

If given an argument string as described above, and called from a startup file, the case sensitivities
will be set. This can not be done from the WRspice prompt. Case sensitivity can also be set from the
command line by using the -c option.

If no argument, a report of the case sensitivity status is printed. This can be done from the WRspice

prompt.

4.2.4 The setfont Command

Syntax: setfont font num font specifier

This command can be used to set the fonts employed in the graphical interface. Although this can
be given at a prompt, it is intended to be invoked in a startup script.

The first argument is an integer 1–6 (1–4 on Windows) which designates the font category. The index
corresponds to the entries in the drop-down menu of font categories found in the Font Selection panel.

4.2. USER INTERFACE SETUP COMMANDS 199

The rest of the line is a font description string. This varies between graphics types.

Unix/Linux
For GTK1 releases, the name is the X Logical Font Descriptor name for a font available on the
user’s system, or an alias. For GTK2 releases, the name is a Pango font description name. There
is a very modest attempt to interpret a specification of the wrong type.

Windows The name is in one or the following formats:

New standard (WRspice release 2.3.58 and later)
face name pixel height

Example: Lucida Console 12

Old standard (deprecated)
(pixel height)face name

Example: (12)Lucida Console

The face name is the name of a font family installed on the system, and the pixel height is the
on-screen size.

You will probably never need to use the setfont command directly. All settable fonts are saved
in the .wrspiceinit startup file when the Update menu command in the File menu is given, or the
update command is invoked.

4.2.5 The setrdb Command

The setrdb command adds resources to the X resource database.

setrdb resource: value

The user interface toolset currently used to implement the WRspice user interface is the GTK toolkit
(www.gtk.org) which does not use the X resource mechanism.

WRspice presently only recognizes resource strings which set the plotting colors for the plot command.
The names of these resources are “color0” through “color19”, which correspond directly to the shell
variables of the same name, and to the colors listed in the Colors tool of the Tools menu of the Tool
Control window. To set a color using the setrdb command, one can use forms like

“setrdb *color2: pink”

4.2.6 The update Command

This command will update the user’s .wrspiceinit file in the home directory to reflect the current
tool setup. The window arrangement should be the same the next time the user starts WRspice. This
command is also performed when the user presses the Update button in the File menu of the Tool
Control window.

200 CHAPTER 4. WRSPICE COMMANDS

4.2.7 The wrupdate Command

This command can be used to check for, download, and install updates to the program. It makes contact
to the distribution area of the Whiteley Research Inc. web site via the internet.

wrupdate [-f] [-p prefix] [-o osname]

In order to use this command, a .wrpasswd file must be installed in the user’s home directory. The
passwd command is used to create this file.

If given without arguments, the command first checks for the existence of a new release. If no newer
release is available, the command will print a message indicating that the program is up-to-date and
exit. Otherwise, the user is prompted whether to download the distribution file for the new release. If
the user agrees, the release file will be downloaded to a temporary directory. Once downloaded, the user
is prompted whether to install the new release. If the user agrees, the distribution file will be expanded
and the files installed in place of the current release. The present program will still exist (it is always
available as the program name with a “.old” extension) and the user can continue working. Subsequent
invocations of the program will start the new version.

Under Windows, installation will require that the user exit the program and run the downloaded file.

On other operating systems, a shell window will appear, and the user will be prompted for a password.
By default, the shell window uses the “sudo” command for password authentication, therefor

1. The sudo command must be installed on the system. On FreeBSD, this command can be installed
as a port or package, it comes preinstalled on OS X and RedHat Linux.

2. The user must have permission to use sudo, which is obtained by adding the user to the /etc/sudoers
file.

Note that the user should enter their own password, and not the root password.

This behavior can be modified by setting the installcmdfmt variable. In particular, if you don’t want
to use sudo for some reason, su can be used instead, by setting the installcmdfmt variable to the string

xterm -e su root -c \"%s\"

In this case, the password entered should be the root password, and only one chance is given to enter
the correct password (sudo will re-prompt if the entered password is incorrect).

The wrupdate command can be run separately to download and install the distribution file — if the
file is found in the temporary directory, and the -f option is not given, the downloading step is skipped.
Beware, however, that if a network hiccup truncates or corrupts the downloaded file, there will be a
problem. If this happens, the -f option, which forces downloaing even if the file already exists locally,
should be used. Alternatively, the corrupt file can be removed by hand.

The -p prefix argument applies during installation only, and overrides the installation location prefix.
If not given, this will default to the prefix used in the current program installation, which defaults to
/usr/local. If given, the prefix must be a rooted directory path/

The -o osname argument allows downloading of a distribution that is not the same “operating
system” as the running program. The osname must be one of the distribution names as used in the
distribution repository. The table below lists the currently recognized names, though not all of these
may be active.

4.3. SHELL COMMANDS 201

Darwin OS X 10.4 universal
Darwin64 OS X 10.6 x86 64
FreeBSD FreeBSD 6.2 i386
FreeBSD7 FreeBSD 7.1 i386
Linux2 Red Hat Linux 7.2 i686
LinuxRHEL3 Red Hat Enterprise 3 i686
LinuxRHEL3 64 Red Hat Enterprise 3 x86 64
LinuxRHEL5 Red Hat Enterprise 5 i686
LinuxRHEL5 64 Red Hat Enterprise 5 x86 64
Win32 Microsoft Windows

Then, the corresponding file will be downloaded and installed, if the user affirms each step and
installation is possible. The file will be downloaded whether or not the running program is current.

The installation step may well fail if the running operating system is incompatible with the distribu-
tion. You can install different versions of Linux on a Linux machine, or Linux on FreeBSD (if the rpm
package is installed) for example, but not Win32 on anything but Windows.

4.3 Shell Commands

The commands listed below are built into the WRspice shell, or control shell operation.

Shell Commands
alias Create alias
cd Change directory
echo Print string
echof Print string to file
history Print command history
pause Pause script execution
rehash Update command database
set Set a variable
shell Execute operating system commands
shift Shift argument list
unalias Destroy alias
unset Unset a variable
usrset Print list of internally used variables

4.3.1 The alias Command

The alias command is used to create aliases, as in the C-shell.

alias [word] [text]

The alias command causes word to be aliased to text. Whenever a command line beginning with word
is typed, text is substituted. Arguments are either appended to the end, or substituted in if history
characters are present in the text. With no argument, a list of the current aliases is displayed.

In the body of the alias text, any strings of the form !:number are replaced with the number ’th
argument of the actual command line. Note that when the alias is defined with the alias command,

202 CHAPTER 4. WRSPICE COMMANDS

these strings must be quoted to prevent history substitution from replacing the !’s before the alias
command can get to them. Thus the command

alias foo echo ’!:2’ ’!:1’

causes “foo bar baz"” to be replaced with “echo baz bar”. Other ! modifiers as described in the
section on history substitution may also be used, always referring to the actual command line arguments
given. If a command line starts with a backslash ‘\’ any alias substitution is inhibited.

4.3.2 The cd Command

The cd command is used to change the current working directory.

cd [directory]

The command will change the current working directory to directory , or to the user’s home directory if
none is given.

4.3.3 The echo Command

The echo command will print its arguments on the standard output.

echo [-n][stuff ...]

If the -n option is given, then the arguments are echoed without a trailing newline.

4.3.4 The echof Command

This command is only available from the control scripts which are active during Monte Carlo or operating
range analysis.

The echof command is used in the same manner as the echo command, however the text is directed
to the output file being generated as the analysis is run. If the file is not open, there is no action. This
command can be used in the scripts to insert text, such as the Monte Carlo trial values, into the output
file.

4.3.5 The history Command

The history command prints the last commands executed.

history [-r] [number]

The command will print out the last number commands typed by the user, or all the commands saved if
number is not given. The number of commands saved is determined by the value of the history variable.
If the -r flag is given, the list is printed in reverse order.

4.3. SHELL COMMANDS 203

4.3.6 The pause Command

The pause command is used in scripts to cause the executing script to wait for a keypress. The function
takes no arguments, and the keypress is discarded.

4.3.7 The rehash Command

The rehash command rebuilds the command list from the files found along the user’s executable file
search path. The command will recalculate the internal hash tables used when looking up operating
system commands, and make all operating system commands in the user’s PATH available for command
completion. This command takes no arguments, and has effect only when the unixcom variable is set.

4.3.8 The set Command

The set command allows the user to examine and set shell variables. It is also possible to assign vectors
with the set command.

set [varname [= value] ...]

In addition, shell variables are set which correspond to definitions supplied on the .options line of the
current circuit, and there are additional shell variables which are set automatically in accord with the
current plot. The shell variables that are currently active can be listed with the set command given
without arguments, and are also listed within the Variables window brought up from the Tools menu
of the Tool Control window. In these listings, a ‘+’ symbol is prepended to variables defined from a
.options line in the current circuit, and a ‘*’ symbol is prepended to those variables defined for the
current plot. These variable definitions will change as the current circuit and current plot change. Some
variables are read-only and may not be changed by the user, though this is not indicated in the listing.

Before a simulation starts, the options from the .options line of the current circuit are merged with
any of the same name that have been set using the shell. The result of the merge is that options that
are booleans will be set if set in either case, and those that take values will assume the value set through
the shell if conflicting definitions are given. The merge will be suppressed if the shell variable noshellopts
is set from the shell, in which case the only options used will be those from the .options line, and those
that are redefined using the set command will be ignored.

Above, the varname is the name of the shell variable to set, and value, if present, is a single token
to be assigned. Multiple variables can be assigned with a single set command. If value is missing
(along with the ‘=’), then varname is of boolean type and always taken as “true” when set. If value is
a pure number not double quoted, then varname will reference that number. Otherwise, varname will
reference value as a character string, unless value is a list. A list is a space-separated list of tokens in
space-separated parentheses, as in

set mylist = (abc def 1.2 xxdone)

which sets the variable mylist to the list of four tokens. The unset command can be used to delete a
variable.

The value of a variable word may be inserted into a command by writing $word. If a variable is set
to a list of values that are enclosed in parentheses (which must be separated from their values by white
space), the value of the variable is the list.

204 CHAPTER 4. WRSPICE COMMANDS

The set command can also be used to assign values to vectors (vectors are described in 3.16). The
syntax in this case is

set &vector = value

which is equivalent to

let vector = value

When entering this form from the WRspice command line, the ‘&’ character must be hidden from the
shell, perhaps most conveniently be preceding it with a backslash. The value must be numeric, and a
value must be given, unlike for a variable which can be set as a boolean.

There are a number of variables with internal meaning to WRspice, and in fact this is the mechanism
by which most WRspice defaults are specified. Several of the other buttons in the Tools menu, including
Commands, Debug, Plot Defs, Shell, and Sim Defs bring up panels from which these special
variables can be modified.

The predefined variables which have meaning to WRspice (see 4.9) can be listed with the usrset com-
mand. In general, variables set in the .options line are available for expansion in $varname references,
but do not otherwise affect the functionality of the shell.

4.3.9 The shell Command

The shell command will pass its arguments to the operating system shell.

shell [command]

The command will fork a shell if no command is given, or execute the arguments as a command to the
operating system.

4.3.10 The shift Command

The shift command facilitates handling of list variables in shell scripts.

shift [varname] [number]

If varname is the name of a list variable, it is shifted to the left by number elements, i.e., the number
leftmost elements are removed. The default varname is argv, and the default number is 1.

4.3.11 The unalias Command

The unalias command is used to remove aliases previously set with the alias command.

unalias [word ...]

The command removes any aliases associated with each of the words. The argument may be “*”, in
which case all aliases are deleted.

4.4. INPUT AND OUTPUT COMMANDS 205

4.3.12 The unset Command

The unset command will remove the definitions of shell variables, previously defined with the set
command, passed as arguments.

unset [varname ...]

All of the named variables are unset (undefined). The argument may be “*”, in which case all variables
are unset (although this is usually not something that one would want to do).

4.3.13 The usrset Command

The usrset command prints a (long) list of all of the variables used internally by WRspice which can be
set with the set command.

usrset [-c][-d][-p][-sh][-si] [keyword ...]

WRspice provides a substantial number of internal switches and variables which can be configured with
the set command. The usrset command prints a listing and brief description of each of the variables
with internal significance to WRspice. If no arguments are given, all of the variables which control
WRspice will be printed. The options print sets of keywords associated with certain functions, which are
in turn associated with a particular panel accessible from the Tool Control window.

Option Toolbar Button Description

-c Commands Variables which control WRspice commands
-d Debug Debugging variables
-p Plot Defs Variables which control plotting
-sh Shell Variables which control the shell
-si Sim Defs Simulation control and SPICE options

Other arguments are taken as variable names, which will result in a description of that variable being
printed.

4.4 Input and Output Commands

These commands manage input to WRspice, or allow WRspice output to be saved in files.

Input and Output Commands
codeblock Manipulate codeblocks
dumpnodes Print node voltages and branch currents
edit Edit text file
listing List current circuit
load Read plot data from file
print Print vectors
sced Bring up Xic schematic editor
source Read circuit or script input file
write Write data to rawfile
xeditor Edit text file

206 CHAPTER 4. WRSPICE COMMANDS

4.4.1 The codeblock Command

The codeblock command manipulates codeblocks.

codeblock [-options] [filename]

A codeblock is a stored executable structure derived from a script file. Being internal representations,
codeblocks execute more efficiently than script files. A codeblock generally has the same name as the
script file from which it was derived.

Option characters, which may be grouped or given as separate tokens, following a ’–’ character, are
listed below.

p print the text of a block (synonym t)
d delete the block (synonym f)
a add a block
b bind the block to the “controls” of the current circuit
be bind the block to the “execs” of the current circuit
c list bound codeblocks of the current circuit

If no filename is given, and neither of the bind options is given, all of the blocks in the internal list
are listed by name, and their commands are printed if p is given, and the blocks are deleted if d is given.
In the latter case, the current circuit codeblock references become empty.

If no filename is given and one of the bind options is given, the respective bound codeblock reference
in the current circuit is removed. Only one of b or be can be given.

In either case, if c is given, the bound codeblocks in the current circuit are listed, after other
operations. The a option is ignored if no filename is given.

The bound codeblocks for the current circuit are also listed in the listing command.

Otherwise, when a name is given, the named file/block is acted on. If no option is given, the add
option is assumed. Added blocks overwrite existing blocks of the same name. The options all apply if
given, and the operations are performed in the order

p (if a not given)
d

a

p (if a given)
b or be
c

When a command is entered in response to a prompt or in a script (or another codeblock), the blocks
are checked first, then the WRspice internal commands, then scripts, then vectors (for the implicit let
in vector = something) and finally operating system commands if unixcom is set.

Thus, once a codeblock has been added, it can be executed by simply entering its name, as if it were
a shell command. If a name conflicts with an internal command or script, the codeblock has precedence.

A codeblock can be “bound” to the current circuit with the b and be options. If be, the block is
bound as an “exec” codeblock, and if b is given, the block is bound as a “control” codeblock. Each
circuit has one of each type, which are by default derived from the .exec and .control statements from

4.4. INPUT AND OUTPUT COMMANDS 207

the circuit file. Binding an external codeblock overrides the blocks obtained from the file. If no filename
was given, the existing binding is deleted from the current circuit, according to whether the b or be was
given. Separate calls are required to unbind both blocks.

Operating range and Monte Carlo analysis can make use of “bound” codeblocks. In both types of
analysis, the “controls” codeblock execution sets a variable indicating whether the circuit simulated prop-
erly according to user specified criteria. When a margin analysis file is input, the lines between .control

and .endc become the default controls codeblock. Similarly, the lines between .exec and .endc become
the default exec codeblock. A bound codeblock will always supersede the default codeblock.

4.4.2 The dumpnodes Command

dumpnodes

This command prints, on the standard output, a table of the most recently computed node voltages
(and branch currents) for the current circuit.

4.4.3 The edit Command

The edit command allows the text of an input file to be edited.

edit [-n][-r] [filename]

The command will bring up a text editor loaded with the named file. If no file name is given, the file
associated with the current circuit will be edited. If no file is associated with the current circuit, the
current circuit will be printed into a temporary file which is opened for editing. If no circuits are present,
an empty file is opened for editing. Pressing the Text Editor button in the Edit menu of the Tool
Control window is equivalent to giving the edit command without arguments.

The editor used is named by the editor variable, the SPICE EDITOR environment variable, or the
EDITOR environment variable, in that order. If none of these is set, or the first one found is set to
“xeditor”, the internal editor is used, if graphics is available. If graphics is not available and no editor
is specified, WRspice will attempt to use the “vi” editor. The internal editor has the advantage of
asynchronous deck sources with the edit window displayed at all times, through the Source button in
the editor’s Options menu. The xeditor command is similar to the edit command, but will always
call the internal editor. See 4.4.10 for a description of the internal editor.

If an external editor is used, if graphics is available the default action is to start the editor in a new
xterm window. This can be suppressed if the noeditwin variable is set. This variable should be set if the
external editor creates its own window to avoid the unneeded xterm. It can also be set for an editor
such as vi, in which case the editing will take place in the same window used to interact with WRspice.

The -r and -n options are available only when the internal editor is not being used, and the editor is
a text-mode editor such as vi and noeditwin is set so that editing takes place in the console controlling
WRspice. If this is the case, after quitting the editor, the file will be sourced automatically if the text was
saved. The -n (no source) option prevents this, and should be given if the editor is used to browse files
that are not SPICE input files. The -r (reuse) option will reuse the existing circuit for the automatic
source, rather than creating a new one. This saves memory, but prevents revisiting earlier revisions of
the circuit. If the internal editor, or any editor that creates its own window is used, WRspice will pop
up the editor and resume command prompting. There is no automatic source in this case.

208 CHAPTER 4. WRSPICE COMMANDS

4.4.4 The listing Command

The listing command is used to generate a listing of the current circuit.

listing [l[ogical]] [p[hysical]] [d[eck]] [e[xpand]]

The command will print a listing of the current circuit to the standard output. The arguments control
the format of the listing. A logical listing is one in which comments are removed and continuation
lines are appended to the end of the continued line. A physical listing is one in which comments and
continuation lines are preserved. A deck listing is a physical listing without line numbers, so as to
be acceptable to the circuit parser — it recreates the input file verbatim. The last option, expand, is
orthogonal to the previous three — it requests that the circuit be printed after subcircuit expansion.
Note that only in an expanded listing are error messages associated with particular lines visible. If no
argument is given, logical is understood.

4.4.5 The load Command

The load command loads data from the files given.

load [filename ...]

The files can be ASCII or binary rawfiles, or Common Simulation Data Format (CSDF) files. The rawfile
format is the native format used in WRspice and Berkeley SPICE3. CSDF is one of the formats used by
HSPICE, and post-processing tools such as Synopsys WaveView.

In HSPICE, “.options csdf=1” and “.options post=csdf” will produce CSDF files. These files
can be loaded into WRspice for display and other purposes with the load command.

In WRspice rawfiles or CSDF files can be produced by the Save Plot button in plot windows, the
write and run commands, and may be generated in batch mode.

If no argument is given, WRspice will attempt to load a file with a default name. The default name is
the value of the rawfile variable if set, or the argument to the -r command line option if one was given,
or “rawspice.raw”.

The file data will be converted into internal plot structures containing vectors available for printing,
plotting, and other manipulation just as if the analysis had been run. The last plot read becomes the
current plot. Data files can also be loaded from the Load button in the Files menu of the Tool Control
window. A name given without a path prefix is searched for in the source path (sourcepath variable).

The load command is internet aware, i.e., if a given filename has an “http://” or “ftp://” prefix,
the file will be downloaded from the internet and loaded. The file is transferred as a temporary file, so
if a permanent local copy is desired, the write command should be used to save file to disk.

4.4.6 The print Command

The print command is used to print vector data on-screen or to a file using output redirection.

print [/format] [col | line] expr [...]

4.4. INPUT AND OUTPUT COMMANDS 209

The command prints the values of the given expressions to the standard output. The default is to use
exponential format for all values, with the number of digits given by the numdgt variable. However, a
fixed-point format can be specified. The format must be the first token after print and has the form
of a forward slash, followed by an optional integer, followed by “f”. The optional integer supplies the
number of decimal places printed, and the “f” indicates fixed-point notation. Any other character will
revert to the default exponential notation. If the number isn’t given, the default is the value of the
numdgt variable if set, or 5.

All vectors listed will be printed in the same format, except for the scale vector, which is printed by
default in the col mode, which is printed with the default notation.

If col is specified, the values are printed in columns, with the scale in the leftmost column on each
page. This is the default for multi-valued vectors. The scale vector (time, frequency) will always be in
the first column unless the variable noprintscale is true.

If line is specified, the value of each expression is printed on one line (or more if needed). If all
expressions have a length of 1, the default style is line, otherwise col is the default.

If no arguments are given, the arguments to the last given print command are used. If the argument
list contains a token consisting of a single period (“.”), this is replaced with the vector list found in the
first .print line from the input file with the same analysis type as the current plot. For example, if the
input file contains

.tran .1u 10u

.print tran v(1) v(2)

then one can type “run” followed by “print .” to print v(1) and v(2).

The related syntax .@N is also recognized, where N is an integer representing the N ’th matching
.print line. The count is 1-based, but N=0 is equivalent to N=1. The token is effectively replaced by
the vector list from the specified .print line found in the circuit deck.

The options width, height, and nobreak are effective for this command, however if printing on-screen,
the actual screen or window size will be used. If the expression is “all”, all of the vectors available are
printed. Thus “print col all > file” will print everything to the file in SPICE2 format.

Examples:

print /3f v(5)

This prints v(5) to three decimal places in fixed-point notation.

print /4f v(2) v(3) v(4) > myfile

This prints the vectors to four decimal places in the file ”myfile”.

print 2*v(2)+v(3) v(4)-v(1)

This prints the computed quantities using the default format.

4.4.7 The sced Command

The sced command brings up the Xic graphical editor (if available) in electrical mode.

210 CHAPTER 4. WRSPICE COMMANDS

sced [filename ...]

This allows schematic capture, with most of the WRspice functionality directly available through the
Xic interface. If the Xic graphical editor is not available for execution, this command will exit with a
message indicating that Xic is not available. Otherwise, the sced command will bring up the schematic
capture front-end with file filename, which must be an Xic input file (not a standard WRspice circuit
file!). If the current circuit originated from Xic, that file will be loaded into Xic if no filename is given.

When Xic saves a native-mode top-level cell containing a schematic, the circuit SPICE listing is
appended to the file. WRspice is smart enough to ignore the geometric information in these files and
read only the circuit listing.

Xic can also be started from the Xic button in the Edit menu of the Tool Control window.

4.4.8 The source Command

The source command is used to load circuit files and command scripts.

source [-r] [-n] [-c] file [file ...]

If more than one file name is given, the files will be concatenated into a temporary file, which is read.
The command will read and process circuit descriptions and command text from the file(s). If .newjob
lines are found within the files, the input will be partitioned into two or more circuit decks, divided by
the .newjob lines. Each circuit deck is processed independently and in sequence.

If a file does not have a path prefix, it is searched for in the search path specified by the sourcepath
variable. If not in the search path or current directory, a full path name must be given.

The source command is internet aware, i.e., if a given filename has an “http://” or “ftp://” prefix,
the file will be downloaded from the internet and sourced. The file is transferred as a temporary file, so
if a permanent local copy is desired, the edit or listing commands should be used to save the circuit
description to disk.

When an input file or set of files is “sourced”, the following steps are performed for each circuit
deck found. The logic is rather complex, and the following steps illustrate but perhaps oversimplify the
process. In particular, the subcircuit/model cache substitution is omitted here.

1. The input is read into a “deck” in memory. Line continuation is applied.

2. The deck is scanned for .param lines which are outside of subcircuit definitions. These are shell
expanded, and used to evaluate .if, .elif and similar lines. Lines that are not in scope are
ignored.

3. Files referenced from .include and .lib lines are resolved and read. At each level, parameters
are scanned again, so that .if, etc. lines do the right thing at each level.

4. Verilog blocks, .exec blocks, and .control blocks are moved out of the main deck into separate
storage.

5. The .exec lines, if any, are executed by the shell.

6. The .options lines are extracted, shell expanded, and evaluated. During evaluation, the shell
receives the assignment definitions.

4.4. INPUT AND OUTPUT COMMANDS 211

7. The remaining lines in the deck are shell expanded.

8. Subcircuit expansion is performed. This takes care of parameter expansion within subcircuit
definition blocks.

9. The circuit (if any) is parsed, and added to the internal circuits list.

10. The .control lines, if any, and executed by the shell.

After a source, the current circuit will be the last circuit parsed.

There are three option flags available, which modify the behavior outlined above. These can be
grouped or given as individual tokens, following a ‘–’ character. Note that if a file name starts with ‘–’,
it must be quoted with double-quote marks. The options are applied before files are read.

r

Reuse the current circuit. The current circuit is destroyed before the new circuit is created, which
becomes the current circuit. This option is ignored if -n is also given.

n

Ignore any circuit definition lines in input. Executable lines will still be executed, but no new
circuit will be produced.

c

Ignore any .control commands. However, .exec lines will still be executed.

n and c

If both of the n and c options are given, all lines of input except for the first “title” line are taken
to be executable, and are executed, as if for a startup file.

4.4.8.1 Implicit Source

In many cases, the “source” is optional. If the name of an existing file is given as a command, the
source is applied implicitly, provided that the file name does not clash with a WRspice command.

4.4.8.2 Input Format Notes

The first line in the input file (after concatenation of multiple input files), and the first line following
a /newjob line, is considered a title line and is not parsed but kept as the name of the circuit. The
exceptions to this rule are old format margin analysis input files and Xic files.

Command lines must be surrounded by the lines .exec or .control and .endc in the file, or prefixed
by “*@” or “*#” in order to be recognized as commands, except in startup files where all lines but the
title line are taken as executable. Commands found in .exec blocks or *@ lines are executed before the
circuit is parsed, thus can set variables used in the circuit. Commands found in .control blocks or *#
lines are executed after the circuit is parsed, so a control line of “ac ...” will work the same as the
corresponding .ac line, for example. Use of the “comment” control prefixes *@ and *# makes it possible
to embed commands in WRspice input files that will be ignored by earlier versions of SPICE.

Shell variables found in the circuit deck (but not in the commands text) are evaluated during the
source. The reset command can be used to update these variables if they are later changed by the shell
after sourcing.

212 CHAPTER 4. WRSPICE COMMANDS

4.4.9 The write Command

The write command is used to save simulation data to a file.

write [file [expr ...]]

There are two data formats available, the “rawfile” format native to WRspice and other simulators based
on Berkeley SPICE3, and the Common Simulation Data Format (CSDF). The CSDF is one of the
formats generated by HSPICE, and is compatible with post-processors such as Synopsys WaveView.

If the file name is given an extension from among those listed below, CSDF output will be generated.
Otherwise, rawfile format will be used.

.csdf

.trN

.acN

.swN

The N is an integer, and tr, ac, and sw correspond to transient, ac, and dc sweep results, respectively.
This is the same convention as used by HSPICE when generating files for post-processing.

If no expr is given, then all vectors in the current plot will be written, the same as giving the word
“all” as an expr. If, in addition, no file name is given, a default name will be used. The default name is
the value of the rawfile variable if set, or the argument to the -r command line option if one was given,
or “rawspice.raw”.

The command writes out the exprs to the file. First, vectors are grouped together by plots, and
written out as such. For example, if the expression list contained three vectors from one plot and two
from another, then two plots will be written, one with three vectors and one with two. Additionally, if
the scale for a vector isn’t present, it is automatically written out as well.

The default rawfile format is ASCII, but this may be changed with the filetype variable or the
SPICE ASCIIRAWFILE environment variable.

If the appendwrite variable is set, the data will be appended to an existing file.

Files that have been appended to, or have multiple plots, are concatenations of data for a single plot.
This is expected and perfectly legitimate for rawfiles, and for CSDF files used only by WRspice, but
concatenated CSDF files may not be portable to other applications.

4.4.10 The xeditor Command

The xeditor command invokes a text editing window for editing circuit and other text files. It is
available only when graphics is enabled.

xeditor [file]

This is similar to the edit command, however the internal editor is always used. The editor variable and
the environment variables used by the edit command are ignored by the xeditor command.

The xeditor command brings up a general-purpose text editor window. The same pop-up editor is
invoked in read-only mode by the Notes button of the Help menu in the Tool Control window for use
as a file viewer. In that mode, commands which modify the text are not available.

4.5. SIMULATION CONTROL COMMANDS 213

See 3.9 for more information about the text editor.

4.5 Simulation Control Commands

The commands described in this section control the execution of WRspice simulations. By default, there
is no activity on screen during a simulation. One can monitor the progress of a run in two ways. First,
the iplot command can be used to plot a variable as the simulation is progressing. To plot v(1), for
example, one would type, before the run is started, “iplot v(1)”. During the run, v(1) will be plotted
on screen, with the plot rescaled as necessary. One can also print variables. For example, the trace
command can be used, by typing “trace time” before the run starts, to cause the time value to be
printed at each output point during transient analysis. These two commands are examples of what are
called “debugs”. Other debugs include stop when and stop after. A debug remains in effect until
deleted with the delete command, and the debugs in effect can be listed with the status command.
The debugs can also be listed, deleted, or made inactive with the Trace tool from the Tools menu. The
run can be paused at any time by typing Ctrl-C in the controlling text window.

It is possible to transparently execute simulations on a remote machine while in WRspice, if the
remote machine has a wrspiced daemon running. It is also possible to run simulations asynchronously
on the present machine. These jobs are not available for use with the iplot command, however. The
jobs command can be used to monitor their status.

Many of these commands operate on the “current circuit” which by default is the last circuit entered
into WRspice explicitly with the source command, or implicitly by typing the file name. The setcirc
command can be used to change the current circuit. The Circuits button in the Tools menu also allows
setting of the current circuit.

When a circuit file is read, any references to shell variables are expanded to their definitions. Shell
variables are referenced as $name, where name has been set with the set command or in the .options

line. This expansion occurs only when the file is sourced, or the reset command is given, so that if the
variable is changed, the circuit must be sourced or reset to make the change evident in the circuit. If a
variable is set in the shell and also in the .options line, the value from the shell is used.

214 CHAPTER 4. WRSPICE COMMANDS

Simulation Commands
ac Perform ac analysis
alter Change circuit parameter
aspice Initiate asynchronous run
cache Manipulate subcircuit/model cache
check Initiate range analysis
dc Initiate dc analysis
delete Delete watchpoint
destroy Delete plot
devload Load device module
devls List available devices
devmod Change device model levels
disto Initiate distortion analysis
dump Print circuit matrix
free Delete circuits and/or plots
jobs Check asynchronous jobs
loop Perform analysis over range
noise Initiate noise analysis
op Compute operating point
pz Initiate pole-zero analysis
reset Reset simulator
resume Resume run in progress
rhost Identify remote SPICE host
rspice Initiate remote SPICE run
run Initiate simulation
save List vectors to save during run
sens Initiate sensitivity analysis
setcirc Set current circuit
show List parameters
state Print circuit state
status Print trace status
step Advance simulator
stop Specify stop condition
tf Initiate transfer function analysis
trace Set trace
tran Initiate transient analysis
where Print nonconvergence information

4.5.1 The ac Command

The ac command initiates an ac analysis of the current circuit.

ac ac args [dc dc args]

The ac args are the same as appear in a .ac line (see 2.7.1). If a dc sweep specification follows, the ac
analysis is performed at each point of the dc analysis (see 2.7.2).

4.5. SIMULATION CONTROL COMMANDS 215

4.5.2 The alter Command

The alter command allows circuit parameters to be changed for the next simulation run.

alter [device list , param [=] value [param [=] value ...]]

The parameters will revert to original values on subsequent runs, unless the alter command is reissued.

If given without arguments, a list of previously entered alterations of the current circuit, to be applied
in the next analysis run, is printed. List entries may have come from previously given alter commands,
or from assignments to the @device[param] special vectors.

The device list is a list of one or more device or model names found in the circuit. The names are
separated by white space, and the list is terminated with a comma. Following the comma is one or more
name/value pairs, optionally an equal sign can appear between the two tokens. The name is a device or
model keyword, which should be applicable to all of the names listed in the device list. Note that this
probably means that the device list can contain device names or models, but not both. The device and
model keywords can be obtained from the show command.

The alter command can be issued multiple times, to set parameters of devices or models which can’t
be intermixed according to the rule above.

The device list can contain “globbing” (wild-card) characters with similar behavior to globbing (global
substitution) in the WRspice shell. Briefly, ‘?’ matches any character, ’*’ matches any set of characters
or no characters, “[abc]” matches the characters ‘a’, ‘b’, and ‘c’, and “a{bc,de}” matches “abc” and
“ade”.

When the next simulation run of the current circuit is started, the given parameters will be substi-
tuted. Thus, the show command, if given before the next run, will not show the altered values. The
internal set of altered values will be destroyed after the substitutions.

Examples:

alter R2, resistance=50

alter c{1,2,3}, capacitance 105p

4.5.3 The aspice Command

The aspice command allows simulation jobs to be run in the background on the present machine.

aspice infile [outfile]

This command will run a simulation asynchronously with infile as an input circuit. If outfile is given, the
output is saved in this file, otherwise a temporary file is used. After this command is issued, the job is
started in the background, and one may continue using WRspice interactively. When the job is finished,
the rawfile is loaded and becomes the current plot, and any output generated is printed. Specifically,
WRspice forks off a new process with the standard input set to infile, and which writes the standard
output to outfile. The forked program is expected to create a rawfile with name given by a -r command
line option. The forked command is effectively “program -S -r rawfile <infile >outfile, where program
is the spicepath variable (which defaults to calling WRspice), rawfile is a temporary file name, and outfile
is the file given, or a temporary file name. Although the aspice command is designed for use with
WRspice, it may be used with other simulators capable of emulating the WRspice server mode protocol.

216 CHAPTER 4. WRSPICE COMMANDS

One may specify the pathname of the program to be run with the spicepath variable, or by setting an
environment variable.

4.5.4 The cache Command

This function provides a control interface to the subcircuit/model cache.

cache [keyword] [tagname]

The subcircuit/model cache contains representations of blocks of input lines that were enclosed in
.cache and .endcache lines. These representations are used instead of the actual lines of input, reducing
setup time.

The command can have the following forms, the first argument is a keyword (or letter). additional
arguments are tag names (the names that follow “.cache” in SPICE input).

cache h[elp]
Print command usage information.

cache l[ist]
Print a list of the tag names currently in the cache. The cache command with no arguments does
the same thing.

cache d[ump] [tagname...]
This will dump the lines saved in the cache, for each tagname given, or for all names if no tagname
is given. Presently, .param lines are listed as comments; the actual parameters are in an internal
representation and not explicitly listed.

cache r[emove] tagname [tagname ...]
This will remove the cached data associated with each tagname given. The given names will no
longer be in the cache.

cache c[lear]
This will clear all data from the cache.

4.5.5 The check Command

The check command is used to initiate margin analysis. Margin analysis can consist of either a swept
operating range analysis, or a Monte Carlo analysis.

check [-v][-a][-m][-r][-c][-f][-s][-k][-h][analysis]

See Chapter 5 for a full description of operating range and Monte Carlo analysis. The current circuit is
evaluated, and must have an associated block of control statements which contain the pass/fail script.
A second associated block of executable statements contains initialization commands. These blocks can
be provided in the circuit file, or be previously defined codeblocks bound to the circuit. Codeblocks
are executable data structures described in 4.4.1. Setting up the file in one of the formats described
described in Chapter 5 will ensure that these blocks are created and bound transparently, however it is
possible to do this by hand.

4.5. SIMULATION CONTROL COMMANDS 217

The option characters can be grouped following a single “-”, or entered separately. The analysis to
be performed is given, otherwise it is found in the circuit deck. In interactive mode, if no analysis is
specified, the user will be prompted for an analysis string. If -v (verbose) is given, results and other
messages are printed on-screen as the analysis is performed, otherwise the analysis is silent, except for
any printing statements executed in the associated command scripts. The mplot command can be used
to follow progress graphically.

If the -a flag is given, operating range analysis is performed at every point (all points mode). Oth-
erwise, the analysis attempts to limit computation by identifying the contour containing the points of
operation. This algorithm can be confused by operating ranges with strange shapes, or which possess
islands of fail points. If the input file contains a .checkall line, then the -a flag to the check command
is redundant, all points will be checked in this case.

If the -m option is given, Monte Carlo analysis is performed, rather than operating range analysis.
This is the default if a .monte line appeared in the file; the -m option is only required if there is no
.monte line. The -a option is ignored if -m is given, as is .checkall. Monte Carlo analysis files differ
from operating range files only in the header (or header codeblock). During Monte Carlo analysis, the
header block is executed before every simulation so that variables can be updated. In operating range
analysis variables are initialized by the header block only once, at the start of analysis.

If the -r (remote) option is given, remote servers will be assigned simulation runs, allowing parallelism
to increase analysis speed. The remote servers must have been specified through the rhost command,
and each must have a wrspiced server running. More information on remote asynchronous runs can ge
found in 4.5.22 and 4.5.23.

The -c (clear) option will clear any margin analysis in progress if the analysis has been paused,
for example by pressing Ctrl-C. If the command line contains only -c, no new analysis is started. If
something else appears on the command line, a new analysis is started after clearing the old analysis.
A paused margin analysis is resumed if the check command is given which does not have the -c option
set, and any arguments given in this case are ignored. The resume command will also restart a paused
margin analysis.

Ordinarily, during operating range and Monte Carlo analysis, only the current data point is retained.
The amount of data retained can be altered with the -f, -s, and -k options. However, if a .measure

line appears in the circuit deck, or the iplot debug is active, data will be retained internally so that the
.measure or iplot is operational.

The -f option will cause the data for the current trial to be retained. This is implied if any .measure

lines are present, or if an iplot is active. The data are overwritten for each new trial. The data for
the last trial are available after the analysis is complete, or can be accessed for intermediate trials if the
analysis is paused.

The -s option also causes retention of the data for the current trial, but in addition will dump the
data to a family of rawfiles, similar to the segment keyword of the .tran line (though this works with
other than transient analysis). The default file name is the name of the range analysis output file,
suffixed with “.sNN ”, where NN is 00, 01, etc. Each trial generates a new suffix in sequence.

With the -k option, all data are retained, in a multi-dimensional plot. Note that this can be huge,
so use of the maxdata variable and .save lines may be necessary. One can see the variations by plotting
some or all of the dimensions of the output. Recall forms like v(1)[N] refer to the N+1 ’th trial, and
v(1)[N,M] includes the data for the N+1 ’th to the M+1 ’th trials. The mplot command has a facility
for displaying trial data in a simplified manner.

Finally, the -h (help) option will simply print a brief summary of the options to the check command.

218 CHAPTER 4. WRSPICE COMMANDS

If an iplot is active, -f (current trial data retention) is implied. The data will be plotted for each
trial in the same iplot, erasing after each trial is complete. If -k is given, all data will be plotted,
without erasure. Note that an iplot doubles internal memory requirements.

During operating range analysis, a file is usually created and placed in the current directory for
output. This file is named with the base name of the input file, with an extension .dNN, where NN is
replaced with 00, 01, etc. — the first case where the filename is unique. If for some reason the input file
name is unknown, the basename “check” will be used. Similarly, in Monte Carlo analysis, a file named
basename.mNN is generated. In either case, the shell variable mplot cur is set to the current output file
name. These files can be plotted on-screen with the “mplot [filename]” command.

The results from operating range/Monte Carlo analysis are hidden away in the resulting plot struc-
ture. The plot can be displayed by entering “mplot vec” where vec is any vector in the plot.

When a .measure is included in an iterative analysis, data are saved as follows. Before each iteration,
the previous result vector and its scale are saved to the end of a “history” vector and scale, and are
then deleted. The result vector and scale are recreated when the measurement is completed during the
iteration. Thus, at the end of the analysis, for a measurement named “example”, one would have the
following vectors:

example the result from the final trial
example scale the measurement interval or point in the last trial
example hist results from the prior trials
example hist scale intervals from the prior trials

Thus, during each trial, the result vector will have the same properties as in a standard run. It can
be used in the .control block of a Monte Carlo or operating range file (recall that $?vector can be used
to query existence, and that if there is no checkPNTS vector defined, the .control block is called once
at the end of each trial).

In the current circuit, the parameters to be varied are usually included as shell variables $value1

and $value2. These are special hard-coded shell variables which contain the parameter values during
simulation. Before the file is sourced (recall that variable substitution occurs during the read-in), these
variables can be set with the set command, and the file simulated just as any other circuit. Initially, the
variables $value1 and $value2 are set to zero. The value1 and value2 names can be changed to other
names, and other mechanisms can be used to supply trial values, as described in Chapter 5.

Briefly, operating range analysis works as follows. The analysis range and other parameters are
specified by setting certain vectors in the header script, or by hand. The range is evaluated by rows
(varying value1) for each column (value2) point. Columns are then reevaluated if the terminating pass
point was not previously found. For a row, starting at the left, points are evaluated until a pass point is
found. The algorithm skips to the right, and evaluates toward the left until a pass point is found. This
minimizes simulation time, however strange operating ranges, such as those that are reentrant or have
islands, will not be reproduced correctly. The only fool-proof method is to evaluate every point, which
will occur if the -a option is given, or the .checkall line was given in the input file.

The range of evaluation is set with center , step, and number variables. The number is the number
of steps to take above and below the center . Thus, if number is 1, the range is over the three points
center-step, center , and center+step. One can set ranges for value1 and value2, or alternatively one can
set value2, and the algorithm can determine the operating range for value1 at each value2 point. These
values represent the parameter variation range in operating range analysis, but serve only to determine
the number of trials in Monte Carlo analysis.

There are a number of vectors with defined names which control operating range and Monte Carlo
analysis. In addition, there are relevant shell variables. The check command creates a plot structure,

4.5. SIMULATION CONTROL COMMANDS 219

which contains all of the special control vectors, plus vectors for each circuit node and branch. This
plot becomes the current plot after the analysis starts. The special vectors which have relevance to the
operating range analysis are listed below.

checkPNTS (real, length >= 1)
These are the points of the scale variable (e.g., time in transient analysis) at which the pass/fail
test is applied. If a fail is encountered, the simulation is stopped and the next trial started. This
vector is usually specified as an array, with the compose command, and is used in operating range
and Monte Carlo analysis. If not specified, the evaluation is performed after the trial completes.

checkVAL1 (real, length 1)
This is the initial central value of the first parameter to be varied during operating range analysis.
It is not used in Monte Carlo analysis.

checkDEL1 (real, length 1)
The first central value will be incremented or decremented by this value between trials in operating
range analysis. It is not used in Monte carlo analysis.

checkSTP1 (integer, length 1)
This is the number of trials above and below the central value. In Monte Carlo analysis, it partially
specifies the number of simulation runs to perform, and specifies one coordinate of the visual array
used to monitor progress (with the mplot command). In operating range analysis, the default is
zero. In Monte Carlo analysis, the default is 3.

checkVAL2, checkDEL2, checkSTP2
These are as above, but relate to the second parameter to be varied in the circuit in operating range
analysis. In Monte Carlo analysis, only checkSTP2 is used, in a manner analogous to checkSTP1.
The total number of simulations in Monte Carlo analysis is (2*checkSTP1 + 1)*(2*checkSTP2 +
1), the same as would be checked in operating range analysis.

checkFAIL (integer, length 1, 0 or 1)
This is the global pass/fail flag, which is set after each trial, 1 indicates failure. This variable is
used in both operating range and Monte Carlo analysis.

opmin1, opmax1, opmin2, opmax2 (real, length >= 1)
The operating range analysis can be directed to find the operating range extrema of the one
parameter for each value of the other parameter. These vectors contain the values found. They
are not used in Monte Carlo analysis.

value (real, length variable)
This vector can be used to pass trial values to the circuit, otherwise shell variables are used. This
pertains to operating range and Monte Carlo analysis.

checkN1, checkN2 (integer, length 1)
These are the indices into the value array of the two parameters being varied in operating range
analysis. The other entries are fixed. These vectors are not used if shell variables pass the trial
values to the circuit, and are not used in Monte Carlo analysis.

The shell variables are:

checkiterate (0-10)
This is the binary search depth used in finding operating range extrema. This is not used in Monte
Carlo analysis.

220 CHAPTER 4. WRSPICE COMMANDS

value1, value2
These variables are set to the current trial values to be used in the circuit (parameters 1 and 2).
The WRspice deck should reference these variables (as $value1 and $value2) as the parameters
to vary. Alternatively, the value array can be used for this purpose. These variables can be used
in Monte Carlo analysis. Additionally, these variables, and a variable named “value” can be set
to a string. When done, the variable or vector named by the string will take on the functionality
of the assigned-to variable. For example, if set value1 = L1 is given, the variable L1 is used to
pass trial parameter 1 values to the circuit (references are $L1).

The checkVAL1, checkDEL1, etc. vectors used must be defined and properly initialized, either in the
deck or directly from the shell.

The shell variables value1 and value2 are set to the current variable 1 and variable 2 values. In
addition, vector variables can be set. This is needed for scripts such as optimization where the parameter
to be varied is required to be under program control. If a vector named value exists, as does a vector
named checkN1, then the vector entry value[checkN1] is set to $value1 if checkN1 is in the range of
value. Similarly, if a vector checkN2 exists, then the vector entry value[checkN2] is set to $value2, if
checkN2 is in the range of value. Thus, instead of invoking $value1 and $value2 in the WRspice text,
one can instead invoke $&value[$&checkN1], $&value[$&checkN2], where we have previously defined
the vectors value, checkN1, checkN2. The file could have a number of parameters set to $&value[0],
$&value[1], If checkN1 is set to 2, for example, $&value[2] would be varied, and the other values
would be fixed at predefined entries. The name “value” can be redefined by setting a shell variable
named “value” to the name of another vector.

If any of the shell variables value1, value2, or a shell variable value are set to a string, then the
shell variable or vector named in the string will have the same function as the assigned-to variable.
For example, if in the header one has “set value1 = L1”, then the variable reference $L1 would be
used in the file to introduce variations, rather than $value1. Similarly, if we have issued “set value =

myvec”, the vector myvec would contain values to vary (using the pointer vectors checkN1 and checkN2),
and a reference would have the form $&myvec[$&checkN1]. Note that the alternate variables are not
automatically defined before the circuit is parsed, so that they should be set to some value in the header.
The default $value1 and $value2 are predefined to zero.

In Monte Carlo analysis, the header block is executed before each simulation. In the header block,
shell variables and vectors may be set for each new trial. These variables and vectors can be used in the
SPICE text to modify circuit parameters. The names of the variables used, and whether to use vectors
or variables, is up to the user (variables are a little more efficient). Monte Carlo analysis does not use
predefined names for parameter data. Typically, the gauss function is used to specify a random value
for the variables in the header block.

One can keep track of the progress of the analysis in two ways. WRspice will print the analysis point
on the screen, plus indicate whether the circuit failed or passed at the point, if the -v option was given
to the check command. The echo command can be used in the codeblock to provide more information
on-screen, which is printed whether or not the -v option was given. The second method uses the mplot
command, which graphically records the pass/fail points. In this mode, the relevant arguments to mplot
are as follows.

mplot -on

This will cause subsequent operating range analysis results to be plotted while the analysis is
running.

mplot -off

This will return to the default (no graphical output while simulating).

4.5. SIMULATION CONTROL COMMANDS 221

The analysis can search for the actual edge of the operating region for each row and column. These
data are stored in vectors named opmin1, opmax1, opmin2, and opmax2 with length equal to the number
of points of the fixed variable. For example, opmin1[0] will contain the minimum parameter 1 value
when parameter 2 is equal to central2 - delta2*steps2, and opmin1[2*steps2] will contain the minimum
parameter 1 value when parameter 2 is central2 + delta2*steps2.

The binary search depth is controlled by a shell variable checkiterate, with possible values of 0–10. If
set to 1–10, the search is performed (setting to 0 skips the range finding). Higher values provide more
accuracy but take more time. If the search is performed, a vector called range and its scale r scale are
also produced. These contain the Y and X coordinates of the operating range contour, which can be
plotted with the command “plot range”.

A typical approach is to first unset checkiterate, checkSTP1, and checkSTP2. The check command
is used to run a single-point analysis, while changing the values of value1 and value2 until a pass point
is found. After the pass point is found, checkiterate can be set to a positive value, which will yield the
ranges for the two variables. Then, the checkSTP1 and other variables can be set to cover this range
with desired granularity, and the analysis performed again.

When only one point is checked (checkSTP1 = checkSTP2 = 0), no output file is generated. If
checkiterate is nonzero and the -a option is given, and a vector is used to supply trial values, the range
of each entry in the vector is determined, and stored in the opmin1 and opmax1 vectors. A mask vector
can be defined, with the same length as the value vector and same name with the suffix “ mask”. Value
entries corresponding to nonzero entries of this vector do not have the range computed. If the -a flag
is not given, the range is found in the usual way. The central value must pass, or the range will not be
computed.

See Chapter 5 for more information on performing operating range and Monte Carlo analysis, and
the suggested file formats.

4.5.6 The dc Command

The dc command performs a swept dc analysis of the current circuit.

dc .dc dc args

The dc args are the same as used in the .dc line (see 2.7.2).

4.5.7 The delete Command

The delete command is used to remove “debugs” (traces or breakpoints) from the debug list.

delete [[in]active] [all | stop | trace | iplot | save | number] ...]

With no arguments, a list of existing debugs is printed, and the user is prompted for one to delete. The
status command also prints a list of debugs. Debugs can also be controlled with the panel brought up
with the Trace button in the Tools menu.

If the inactive/active keyword is given, breakpoints listed to the right but before another (in)active
keyword are deleted only if they are inactive/active. Otherwise, they are deleted unconditionally. If one
of stop, trace, iplot, or save is given, debugs of that type only are deleted. These keywords can appear
in combination.

222 CHAPTER 4. WRSPICE COMMANDS

Each debug is assigned a unique number, which is available through the status command. This
number can also be entered on the command line causing that debug to be deleted (if the activity
matches the inactive keyword, if given). A range of numbers can be given, for example “2-6”. There
must be no white space in the range token.

Examples:

Delete all traces and iplots:
delete trace iplot

Delete all inactive debugs:
delete inactive all

Delete all traces and inactive iplots:
delete traces inactive iplots

4.5.8 The destroy Command

The destroy command will delete plot structures.

destroy [all] | [plotname ...]

Giving this command will throw away the data in the named plots and reclaim the storage space. This
can be necessary if a lot of large simulations are being done. WRspice should warn the user if the size of
the program is approaching the maximum allowable size (within about 90%), but it is advisable to run
the rusage command occasionally if running out of space is a possibility. If the argument to destroy is
all, all plots except the constants plot will be thrown away. It is not possible to destroy the constants
plot. If no argument is given the current plot is destroyed.

4.5.9 The devload Command

This command will load a loadable device module into WRspice.

devload [module path]

WRspice supports runtime-loadable device modules. Once loaded, the corresponding device is avail-
able during simulation runs, in the same way as the internally-compiled devices in the device library.

This command can be used at any time to load a device module into WRspice. If given without
arguments, a list of the dynamically loaded device modules currently in memory is printed. Otherwise,
the single argument is a path to the loadable device module file to be loaded.

Once a module is loaded, it can not be unloaded. However, if a module is subsequently loaded
that has the same key letter and model level as an existing loaded module, the existing module will be
replaced. If a module is loaded that has the same key letter and model level as a compiled-in library
device, the module will not be accessible, and an error message will appear. It is not possible to overwrite
the internal devices.

On program startup, all loadable devices found in the devices subdirectory of the installation
startup directory (which is generally installed as /usr/local/share/xictools/wrspice/startup/devices)
will be loaded automatically. This can be skipped by invoking WRspice with the -m option in the com-
mand line.

4.5. SIMULATION CONTROL COMMANDS 223

4.5.10 The devls Command

This command lists currently available devices.

devls [key[minlev[-maxlev]]] ...

This commnd prints a listing of devices available for use in simulation, from the built-in device library
or loaded as modules at run time. With no argument, all available devices are listed.

Arguments take the form of a key letter, optionally followed by an integer, or two integers separated
by a hyphen to indicate a range. This will print only devices that match the key letter, and have model
levels that match the integer or integer range given. Any number of these arguments can be given.

Example: devls c r1 m30-40

This will print all devices keyed by ‘c’ (capacitors), all devices keyed by ‘r’ (resistors) with model
level 1, and devices keyed by ‘m’ (mos) with model levels 30–40 inclusive.

4.5.11 The devmod Command

It is possible to program the model levels associated with devices in WRspice.

devmod index [level ...]

This allows the user to set up model levels for compatibility with another simulator, or to directly
use simulation files where the model level is different from that initially assigned in WRspice. The effect
is similar to the .mosmap input directive, but applies to all device types.

All devices have built-in levels, which are the defaults. This command allows levels to be changed in
the currently running WRspice. The change occurs in memory only so is not persistent across different
WRspice sessions. However, the command can be used in a startup script to perform the changes each
time WRspice is invoked.

The first argument to devmod is a mandatory device index. This is an integer that corresponds
to an internal index for the device. These are the numbers that appear in the listing from the devls
command.

If there are no other arguments, the device is simply listed, in the same format as the entries from
devls.

Any following arguments are taken as model levels. Each level is an integer in the range 1–255, and
up to eight levels can be given. The device will be called for any of the level numbers listed.

After pressing Enter, the device entry is printed with the new model levels. The entire device list is
checked, and if there are clashes from the new model level, a warning is issued. If two similar devices
have the same model number, the device with the lowest index will always be selected for that value.

There are a few devices that have levels that can not be changed. These are built-in models, such as
MOS and TRA, where the model code is designed to handle several built-in levels (such as MOS levels
1–3 and 6). Attempting to change these levels will fail.

Model level 1 is somewhat special in that it is the default when no model level is given in SPICE
input for a device. Level 0 is reserved for internal use and can not be assigned. The largest possible
model level is 255 in WRspice.

224 CHAPTER 4. WRSPICE COMMANDS

4.5.12 The disto Command

The disto command will initiate distortion analysis of the current circuit.

disto disto args [dc dc args]

The disto args are the same as appear in a .disto line (see 2.7.3). If a dc sweep specification follows,
the distortion analysis is performed at each point of the dc analysis (see 2.7.2).

4.5.13 The dump Command

The dump command may be useful for analyzing convergence problems. This command sends a print
of the internal matrix data structure last used by the simulator for the current circuit to the standard
output. It is used for program debugging, but may be useful if convergence problems are encountered.
The command takes no arguments.

4.5.14 The free Command

The free command is used to free memory used by circuit and plot structures.

free [c[ircuit]] [p[lot]] [a[ll]] [y[es]]

This command releases the memory used to store plot and circuit structures for reuse by WRspice. The
virtual memory space used by plots in particular can grow quite large. If free is given without an argu-
ment, the user is queried as to whether to delete the current plot and circuit structures (independently).
If the argument all is given, the user is queried as to whether to delete all plot and circuit structures. If
the argument circuit is given, only circuits will be acted on. Similarly, if the argument plot is given,
only plots will be acted on. If neither circuit or plot is given, both circuits and plots will be acted on.
If the argument yes is given, the user prompting is skipped, and the action performed. Only the first
letter of the keywords is needed. Plots can also be freed from the panel brought up by the Plots button
in the Tools menu, and circuits can be freed from the panel brought up with the Circuits button. The
destroy command can also be used to free plots.

4.5.15 The jobs Command

The jobs command produces a report on the asynchronous WRspice jobs currently running. Asyn-
chronous jobs can be started with the aspice command locally, or on a remote system with the rspice
command. WRspice checks to see if the jobs are finished every time a command is executed. If a job is
finished, then the data are loaded and become available. This command takes no arguments.

4.5.16 The loop Command

The loop command is used to perform a simulation analysis over a range of conditions.

loop [-c] [min1 [max1 [step1]] [min2 [max2 [step2]]] [analysis]]

4.5. SIMULATION CONTROL COMMANDS 225

The loop command is used to perform a simulation analysis over a range of conditions. The command
works something like a dc sweep, however the shell variables value1 and value2, which are accessible
in the circuit as $value1 and $value2, are incremented, as in operating range analysis. The specified
analysis is performed at each point, yielding multidimensional output vectors. If analysis is omitted, an
analysis specification is expected to be found in the circuit deck.

There are several methods for introducing the variations into the circuit deck.

1. Perhaps the most direct method is to include the forms $value1 and $value2 (if two dimensional)
for substitution in the current circuit. The variables will be replaced by the appropriate numerical
values before each trial, as for shell variable substitution.

2. If a variable named “value1” is set to a string token with the set command, then a variable of
the same name as the string token will be incremented, instead of value1. The same applies to
value2. Thus, for example, if the circuit contains expansion forms of the variables foo1 and foo2

(i.e., $foo1 and $foo2), one could perform a loop analysis using these variables as

set value1 = foo1 value2 = foo2

loop ...

3. The method above allows the SPICE options to be iterated. These are the built-in keywords,
which can be set with the set command or in a .options line in an input file, which control or
provide parameters to the simulation.

The most important example is temperature sweeping, using the temp option. A temperature
sweep would look like

set value1=temp

loop -50 50 25 analysis

This will run the analysis at -50, -25, 0, 25, and 50 Celsius.

4. If there are existing vectors named “checkN1” and (if two dimensions) “checkN2” that contain
integer values, and the variable named “value” is set to the name of an existing vector (or a
vector named “value” exists), then the vector components indexed by checkN1 and checkN2 will
be iterated, if within the size of the vector. For example:

let vec[10] = 0

let checkN1 = 5 checkN2 = 6

set value = vec

loop ...

The first line creates a vector named “vec” of size sufficient to contain the indices. The iterated
values will be placed in vec[5] and vec[6]. The circuit should reference these values, either
through shell substitution (e.g., $&vec[5]) or directly as vectors.

Alternatively, a variable named “checkN1” can be set. If the value of this variable is an integer,
that integer will be used as the index. If the variable is a name token, then the index will be
supplied by a vector of the given name. The same applies to checkN2. The following example
illustrates these alternatives:

let vec[10] = 0

set checkN1 = 5

let foo = 6

set checkN2 = foo

loop ...

226 CHAPTER 4. WRSPICE COMMANDS

5. Given that it is possible to set a vector as if a variable, by using the set command with the syntax

set &vector = value

it is possible to iterate vectors with the loop command. The form above is equivalent to

let vector = value

Note, however, that the ‘&’ character has special significance to the WRspice shell, so when this
form if given on the command line the ampersand should be quoted, e.g., by preceding it with a
backslash.

Thus, suppose that the circuit depends on a vector named delta. One can set up iteration using
this vector as

set value1 = ’&delta’

loop ...

6. The construct above can be extended to “special” vectors, which enable device and model param-
eters to be set ahead of the next analysis. These special vectors have the form

@devname[param]

where devname is the name of a device or model in the circuit, and param is one of the parameter
keywords for the device or model. These keywords can be listed with the show command.

For example, if the circuit contains a MOS device m1 one might have

set value1 = ’&@m1[w]’

loop 1.0u 2.0u 0.25u analysis

This will perform the analysis while varying the m1 w (device width) parameter from 1.0 to 2.0
microns in 0.25 micron increments.

If an analysis loop is paused, for example by pressing Ctrl-C, it can be resumed by entering the
loop command again. No arguments are required in this case, however if the -c option is given the old
analysis is cleared, and a new analysis started if further parameters are supplied. The -c is ignored if
there was no loop analysis in progress. The resume command will also resume a paused loop analysis.
The reset command given with the -c option will also clear any paused loop analysis.

4.5.17 The noise Command

The noise command initiates a small-signal noise analysis of the current circuit.

noise noise args [dc dc args]

The noise args are the same as appear in a .noise line (see 2.7.4). If a dc sweep specification follows,
the noise analysis is performed at each point of the dc analysis (see 2.7.2).

4.5.18 The op Command

The op command will initiate dc operating point analysis of the current circuit (see 2.7.5). The command
takes no arguments.

4.5. SIMULATION CONTROL COMMANDS 227

4.5.19 The pz Command

The pz command will initiate pole-zero analysis on the current circuit.

pz pz args

The pz args are the same as appear in a .pz line (see 2.7.6).

4.5.20 The reset Command

The reset command will reinitialize the current circuit.

reset [-c]

The command will throw out any intermediate data in the circuit (e.g, after a breakpoint or user pause
with Ctrl-C) and re-parse the deck. Any standard analysis in progress will be cleared, however the
state of any margin analysis (started with the check command), or loop analysis (started with the loop
command) is retained by default. However, if the -c option is given, these too are cleared. Thus, the
reset command can be used to update the shell variables in a deck with or without affecting the status
of a margin or loop analysis in progress.

4.5.21 The resume Command

The resume command will resume an analysis in progress. The simulation can be stopped by typing
an interrupt (Ctrl-C) or with the stop command. If no analysis is currently in progress, the effect is
the same as the run command. Each circuit can have one each of a standard analysis, a loop analysis
(started with the loop command), and a margin analysis (from the check command) in progress. The
resume command will resume standard analysis, margin analysis, and loop analysis in that precedence.
Paused margin and loop analysis can also be restarted with the check and loop commands. These
commands, and the reset command, can be used to clear stopped analyses. The resume command
takes no arguments.

4.5.22 The rhost Command

The rhost command allows addition of host names which are available for remote WRspice runs.

rhost [-a][-d] [hostname]

This command allows manipulation of a list of host names which are available for remote WRspice runs
with the rspice command. If no arguments are given, the list of hosts is printed. The -a and -d options
allow a host name to be added to or deleted from the list, respectively. The default is -a. Hosts are
added to the list if they have been specified in the environment or with the rhost variable, and a job
has been submitted. The hostname can optionally be suffixed with a colon followed by the port number
to use to communicate with the wrspiced daemon. If not given, the port number is obtained from the
operating system for “wrspice/tcp”, or 6114 if this is not defined. Port number 6114 is registered with
IANA for this service.

228 CHAPTER 4. WRSPICE COMMANDS

4.5.23 The rspice Command

The rspice command is used to initiate simulation runs on a remote machine.

rspice inputfile
or
rspice [-h host][-p program][-f inputfile] [analysis]

This command initiates a remove WRspice job, using the inputfile as input, or the current circuit if no
inputfile is given. If the -h option is not used, the default host can be specified in the environment before
WRspice is started with the SPICE HOST environment variable, or with the rhost variable. In addition,
a list of hosts which are nominally available for remote runs can be generated with the rhost command.
The default host used is the host known to WRspice that has the fewest active submissions, or which
appears last on the list (hosts are added to the front of the list). If the -p option is not used, WRspice

will use the program found in the rprogram variable, and if not set will use the same program as the
aspice command. If the -f option is not used, the current circuit is submitted, otherwise inputfile is
submitted. If there is no analysis specification, there must be an analysis specified in inputfile. If the
current circuit is being submitted, there must be an analysis specification given on the command line.

Once the job is submitted, WRspice returns to interactive mode. When the job is complete, the
standard output of the job, if any, is printed, and the rawfile generated becomes the current plot.

Remote runs can only be performed on machines which have the wrspiced daemon operating, and
have permission to execute the target program.

4.5.24 The run Command

The run command initiates the analysis found in the deck associated with the current circuit.

run [file]

The command will run the simulation as specified in the input file. If there were any of the analysis
specification lines (.dc, .tran, etc.) they are executed. The output is put in file if it was given, in
addition to being available interactively.

There are two file formats available, the native “rawfile” format, and the Common Simulation Data
Format (CSDF) used by HSPICE. See the description of the write command (4.4.9) for information on
format selection.

If a standard analysis run is in progress and halted with the stop command or by pressing Ctrl-C,
the run command will resume that run. This applies only to standard analyses, and not margin analysis
or loop analysis. Standard analyses started with the analysis commands tran, dc, etc. , will always
start a new analysis, after clearing any paused standard analysis.

4.5.25 The save Command

The save command can be used to save a particular set of outputs from a simulation run.

save [all] [nodename ...]

4.5. SIMULATION CONTROL COMMANDS 229

The command will save a set of outputs, the rest will be discarded. If a node has been mentioned in a
save command, it will appear in the working plot after a run has completed, or in the rawfile if WRspice

is run in batch mode (in this case, the command can be given in the input file as .save ...). If a node is
traced or used in an iplot it will also be saved. If no save commands are given, all nodes will be saved.
The save can be deleted with the delete command, or from the panel brought up by the Trace button
in the Tools menu.

If a save command is given at the prompt in interactive mode, it is placed in a global list, and
activity will persist until deleted (with the delete command). If the command is given in a file, the
command will be added to a list for the current circuit, and will apply only to that circuit. Thus, for
example, a WRspice file can contain lines like

*# save v(1) ...

and the action will be performed as that circuit is run, but the “save v(1) ...” directive will not apply
to other circuits.

One can save “special” variables, i.e., device/circuit parameters that begin with ‘@’. If a device
parameter is a list type, only a single component can be saved. The single component can be specified
with an integer, or with a vector name that evaluates to an integer. For example, the initial condition
values for a Josephson junction can be accessed as a list, say for a junction named “b1”, one can specify

@b1[ic,0] or @b1[ic][0]

which are equivalent, and each the same as @b1[vj], the initial voltage. Similarly,

@b1[ic,1] or @b1[ic][1]

are equivalent, each being the same as @b1[phi], the initial phase.

One can also have

let val = 1 (this vector is defined somewhere)
@b1[ic,val] or @b1[ic][val]

Thus, commands like

save @b1[ic,0]

or equivalently

save @b1[ic][0]

are accepted. Note that “save @b1[ic]” is the same as “save @b1[ic,0]”. The “0” can be an integer,
or a vector name that evaluates to an integer.

4.5.26 The sens Command

The sens command initiates sensitivity analysis on the current circuit.

230 CHAPTER 4. WRSPICE COMMANDS

sens sens args [dc dc args]

The sens args are the same as appear in a .sens line (see 2.7.7). If a dc sweep specification follows, the
sensitivity analysis is performed at each point of the dc analysis (see 2.7.2).

4.5.27 The setcirc Command

The setcirc command will set the “current circuit” assumed by WRspice.

setcirc [circuit name]

The current circuit is the one that is used by the analysis commands. When a circuit is loaded with the
source command it becomes the current circuit. If no arguments are given, a list of circuits is printed,
and the user is requested to choose one. The current circuit can also be selected from the panel brought
up by the Circuits button in the Tools menu.

4.5.28 The show Command

The show command is used to display information about devices, models, and internal statistics.

show [-r|-o|-d|-n nodename|-m|-D[M]|-M] [args] [, parmlist]

If -r is given, system resource values are printed. The args are resource keywords as in the rusage
command, and there is no parmlist. If there are no args, only total time and space usage are printed.

If -o is given, WRspice option values are printed. These values are obtained from the .options line
of the current circuit, or have been set with the set command. If no args are given, the default is all.
There is no parmlist.

If -d is given, or if no option is given, device parameters are printed. The args are device names,
and the parmlist, which is separated from the device list by a comma, consists of device parameter
keywords. The parameters are expected to apply to each device in the list. Both lists can contain
“globbing” (wild-card) characters with similar behavior to globbing (global substitution) in the WRspice

shell. Briefly, ‘?’ matches any character, ’*’ matches any set of characters or no characters, “[abc]”
matches the characters ‘a’, ‘b’, and ‘c’, and “a{bc,de}” matches “abc” and “ade”. Either the device
args or the parmlist can be “all”, and the default is “all, all” (“all” is equivalent to ‘*’). Either the
device args or the parmlist can be “all”, and the default is “all, all”. If the parmlist is the keyword
“none”, then no parameters are listed, only the devices with their resolved model names. This can be
useful for determining which model is actually used for a MOS device, if L/W model selection is being
used. The command “show -d m*,none” will display the name of the model used for each MOS device.

If -n is given, followed by the name of a circuit node, the output is in the same form as for -d however
only devices connected to the named node are displayed.

If -m is given, model parameters are printed. The args are model names, and the parmlist is the list
of model parameters to print. Wild-carding is accepted in both lists. The default is all, all. The
parameters are expected to apply to each model in the list. See the entries for the various devices and
models for the parameter names, or type the show command without a parameter list to see the current
values for all available parameters for the devices or models mentioned.

Spaces around the “,” are optional, as is the “,” itself if no parameters are given. If no argument is
given to the show command, all parameters of all devices in the current circuit will be displayed.

4.5. SIMULATION CONTROL COMMANDS 231

The -D and -M options are similar, but keywords and descriptions from the internal models are listed,
and no values are shown. It is not necessary to have a circuit loaded, as it is with -d and -m. The args are
single characters which key the devices in WRspice, such as ‘c’ for capacitors, ‘q’ for bipolar transistors,
etc. . For devices with a level model parameter such as MOSFETs, an integer indicating the model
level can follow the key argument, without any space.

If these options are given with no argument, the device or model info is printed for each device or
model (both for “show -DM”) found in the device library. If an argument is given, only the matching
device or model will be be shown, but all of the parameters will be listed in addition. The -D option
lists the instance parameters, and -M the model parameters, and -DM will list both. In the listing, the
letters ‘RO’ indicate a read-only parameter, which is a computed quantity not set in the instance or
model lines. The letters ‘NR’ indicate a parameter that can’t be read, i.e., it is input-only. Recall that
device parameters can be accessed as vectors with the @devname[param] construct. There is no parmlist
for the -D and -M options.

For example, to print the resistance of all resistors in the current circuit, enter

show -d r*, resistance

The -d above is optional, being the default. To print the cbs and cbd parameters of mosfets m1–m4

show m[1-4], c{bd,bs}

To print the current value of the relative tolerance option, enter

show -o reltol

Entering

show -DM q m5

will list the instance and model parameters of bipolar transistors and level 5 (BSIM2) MOSFETs.

4.5.29 The state Command

The state command will print the name and a summary of the state of the current circuit. The command
takes no arguments.

4.5.30 The status Command

The status command is used to print a list of the “debugs” currently in force. The command will print
out a summary of all the trace, stop, save, and iplot commands that are active. Each debug is assigned
a unique number, which can be supplied to the delete command to remove the debug. The debug list
can also be manipulated from the panel brought up with the Trace button in the Tools menu. The
command takes no arguments.

4.5.31 The step Command

The step command allows single-stepping through a transient simulation.

232 CHAPTER 4. WRSPICE COMMANDS

step [number]

The command will simulate through the number of user output points given, or one, if no number is
given.

4.5.32 The stop Command

The stop command will add a breakpoint to the debug list.

stop [before | at | after num] [when expr1 op expr2] ...

When the condition is true, simulation will stop, and can be resumed, after clearing the breakpoint, with
the resume command. The breakpoints can be cleared with the delete command, and listed with the
status command. The panel brought up by the Trace button in the Tools menu can also be used to
manipulate breakpoints.

The first clause specifies the user output points at which the break is in effect. If an after clause
is given, the simulation will stop after num points. The at clause stops only at num points, and the
before clause stops only before num points. These are useful in conjunction with a when clause or can
be omitted. If a when clause is included, at each point, the expr1,2 expressions will be evaluated and
expr1 op expr2 will be checked, and if it is true, the simulation will stop. If more than one when or after
clause is put on one line, the conjunction of the conditions is checked. The ops are relational operators
from the list below. Note that for this command, < and > do not denote IO redirection.

eq or = equal to
ne or <> not equal to
gt or > greater than
lt or < less than
ge or >= greater than or equal to
le or <= less than or equal to

If a stop command is given at the prompt in interactive mode, it is placed in a global list, and
activity will persist until deleted (with the delete command). If the command is given in a file, the
command will be added to a list for the current circuit, and will apply only to that circuit. Thus, for
example, a WRspice file can contain lines like

*# stop when ...

and the action will be performed as that circuit is run, but the “stop when ...” directive will not apply
to other circuits.

4.5.33 The tf Command

The tf command will initiate a transfer function analysis of the current circuit.

tf tf args [dc dc args]

The arguments appear as they would in a .tf line (see 2.7.8) in the input file. If a dc sweep specification
follows, the transfer function analysis will be performed at each dc sweep point (see 2.7.2).

4.6. DATA MANIPULATION COMMANDS 233

4.5.34 The trace Command

The trace command will add a “debug” which prints the value of the expression(s) at each user analysis
point.

trace expr [...]

At each time point, the expressions on the command line will be evaluated, and their values printed on
the standard output.

If a trace command is given at the prompt in interactive mode, it is placed in a global list, and
activity will persist until deleted (with the delete command). If the command is given in a file, the
command will be added to a list for the current circuit, and will apply only to that circuit. Thus, for
example, a WRspice file can contain lines like

*# trace v(1)

and the trace will be performed as that circuit is run, but the “trace v(1)” directive will not apply to
other circuits.

The traces in effect can be listed with the status command, deleted with the delete command, and
otherwise manipulated from the panel brought up with the Trace button in the Tools menu.

4.5.35 The tran Command

The tran command initiates transient analysis of the current circuit.

tran tran args [dc dc args]

The arguments are the same as those of a .tran line (see 2.7.9). Output is retained at tstart, tstop,
and multiples of tstep in between, unless the variable steptype is set to nousertp. In this case, output
is retained at each internally generated time point in the range. If a dc sweep specification follows, the
transient analysis is performed at each sweep point.

4.5.36 The where Command

The where command, which takes no arguments, prints information about the last nonconvergence, for
debugging purposes.

4.6 Data Manipulation Commands

The following commands perform various operations on vectors, which are the basic data structures of
WRspice. Vectors from the current plot can be referenced by name. A listing of the vectors for the current
plot is obtained by typing the let or display commands without arguments, or pressing the Vectors
button in the Tools menu. Vectors for other than the current plot are referenced by plotname.vecname,
for example, tran2.v(1). The current plot can be changed with the setplot command, or from the
panel brought up by the Plots button in the Tools menu.

Vectors can be created and manipulated in many ways. For example, typing

234 CHAPTER 4. WRSPICE COMMANDS

let diff = v(1) - v(2)

creates a new vector diff. All vectors can be printed, plotted, or used in expressions. They can be deleted
with the unlet command.

Data Manipulation Commands
compose Create vector
cross Vector cross operation
define Define a macro function
deftype Define a data type
diff Compare plots and vectors
display Print vector list
fourier Perform spectral analysis
let Create or assign vectors
linearize Linearize vector data
pick Create vector from reduced data
seed Seed random number generator
setplot Set current plot
setscale Assign scale to vector
settype Assign type to vector
spec Perform spectral analysis
undefine Undefine macro function
unlet Undefine vector

4.6.1 The compose Command

The compose command is used to create vectors. It has two forms:

compose vecname param = value [...]

or
compose vecname values value [...]

Both forms of this command create a new vector called vecname. In the first form, the values in the
vector are determined by the parameters given, as described below. In the second form, indicated by
the keyword “values”, the given values are used to form the vector.

In the first form, there are three groups of possible parameter sets. The first set facilitates creation
of uniform arrays. This set contains the following parameters.

start The value at which the vector should start
stop The value at which the vector should end
step The difference between successive elements
lin The number of points, linearly spaced
log The number of points, logarithmically spaced
dec The number of points per decade, logarithmically spaced

The words “len” and “length” are synonyms for “lin”. A subset of these parameters that provides
the information needed is sufficient. If all four are given, the point count and step value must be
consistent or the command will fail. The parameter start defaults to zero, unless implicitly set by

4.6. DATA MANIPULATION COMMANDS 235

other parameters. The stop and step have no defaults and must be supplied unless implied by other
parameters. If the lin parameter is not given, the other parameters determine the vector length.

The second parameter group generates Gaussian random values.

gauss The number of points in the gaussian distribution
mean The mean value for the gaussian distribution
sd The standard deviation for the gaussian distribution

The gauss parameter is required, sd defaults to 1.0, and mean defaults to 0. The random number
sequences can be reset by calling the seed command.

The third parameter group generates uniform random values.

random The number of randomly selected points
center Where to center the range of points
span The size of the range of points

The random parameter is required, span defaults to 2.0, and center defaults to 0. The random
number sequences can be reset by calling the seed command.

4.6.2 The cross Command

The cross command creates a new vector.

cross vecname number source [...]

The vector is constructed, with name vecname and values consisting of the number ’th element of each
of the source vectors. If the index is out of range for a vector, 0 is taken.

4.6.3 The define Command

The define command is used to specify user-defined vector functions.

define [function(arg1, arg2, ...)] [=] [expression]

This will define the user-definable function with the name function and arguments arg1 , arg2 , ... to be
expression, which will usually involve the arguments. When the function is called, the arguments that
are given are substituted for the formal arguments.

The define command and the .param line in input files can be used to define user-defined functions
(UDFs). User-defined function definitions are modularized and prioritized. At the base of the hierarchy
(with lowest priority) are the ”shell” UDFs which are defined with the define command.

Every circuit has its own set of UDFs, which are obtained from .param lines which are not part of
a subcircuit. When a circuit is the current circuit, its UDFs will be searched before the shell UDFs to
resolve a function reference. The current circuit’s UDF database is pushed onto a stack, ahead of the
shell UDFs. Most of the time, this stack is two levels deep.

236 CHAPTER 4. WRSPICE COMMANDS

During initial circuit processing, when subcircuit expansion is being performed, when a subcircuit is
bing expanded, any functions defined within the .subckt text with .param lines are pushed on the top
of the stack. Since subcircuit definitions may be nested, functions will be pushed/popped according to
the depth in the hierarchy currently being processed.

Thus, a function defined in a subcircuit will have priority over a function of the same name and
argument count defined in the circuit body, and a function defined in the circuit body will have priority
over a function with the same name and argument count defined from the shell with the define command.

When define is given without arguments, all currently defined functions are listed. Those definitions
from the current circuit will be shown with an asterisk ‘*’ in the first column. Other functions listed
have been defined with the define command. The functions defined in subcircuits are invisible, their
use is only transient and they are part of the database only during subcircuit expansion.

If only a function name is given, any definitions for functions with the given name are printed.

It is possible to define a function that calls a non-existing function. The resolution is done when the
function is evaluated. Thus, functions of functions can be defined in any order.

Note that one may have different functions defined with the same name but different argument
counts. Some useful definitions (which are part of the default environment) are:

define max(x,y) x > y ? x : y

define min(x,y) x < y ? x : y

4.6.4 The deftype Command

The deftype command defines a new data type.

deftype v typename [abbrev]
deftype p plottype [pattern ...]

This is an obscure command that might be useful for exporting rawfile data to other programs. If a
vector’s value indicates furlongs per fortnight, its type can be so defined. However, user-defined types
are not compatible with the internal WRspice type propagation logic. Vectors with user-defined types,
or results involving user-defined types, will be treated as untyped in WRspice.

The first form defines a new type for vectors. The typename may then be used as a vector type
specification in a rawfile. If an abbrev is given, values of that type can be named abbrev(something)
where something is the name given in the rawfile (and something doesn’t contain parentheses).

The second form defines a plot type. The (one word) name for a plot with any of the patterns present
in its plot type name as given in the rawfile will be plottypeN, where N is a positive integer incremented
every time a rawfile is read or a new plot is defined.

4.6.5 The diff Command

The diff command compares vectors in different plots.

diff plot1 plot2 [vecname ...]

The command will compare all the vectors in the specified plots, or only the named vectors if any are
given. If there are different vectors in the two plots, or any values in the vectors differ significantly,

4.6. DATA MANIPULATION COMMANDS 237

the difference is reported. The variables diff abstol, diff reltol, and diff vntol are used to determine if two
values are “significantly” different.

4.6.6 The display Command

The display command prints information about the named vectors, or about all vectors in the current
plot if no names are given.

display [vecname ...]

This command will list the names, types and lengths of the vectors, and whether the vector is real or
complex.

Additional information is also given: if there is a minimum or maximum value for the vector defined,
this is listed (see A.1 for the manner in which this and the rest of the per-vector parameters are defined),
if there is a default grid type or a default plot type, they are mentioned, and if there is a default color
or a default scale for the vector it is noted. Additionally, one vector in the plot will have the notation
[default scale] appended — this vector will be used as the x-scale for the plot command if none is
given or if the vectors named have no default scales of their own. See the plot command (4.7.6) for
more information on scales.

The vectors are sorted by name unless the variable nosort is set. The let command without arguments
is equivalent to the display command without arguments.

4.6.7 The fourier Command

The fourier command performs Fourier analysis.

fourier fundamental frequency [value ...]

The command initiates a fourier analysis of each of the given values, using the first 10 multiples of
the fundamental frequency (or the first nfreqs, if that variable is set). The values may be any valid
expression. They are interpolated onto a fixed-space grid with the number of points given by the
fourgridsize variable, or 200 if it is not set. The interpolation will be of degree polydegree if that variable
is set, or 1. If polydegree is 0, then no interpolation will be done. This is likely to give erroneous results
if the time scale is not monotonic. This command is executed when a .four line is present in the input
file and WRspice is being run in batch mode.

4.6.8 The let Command

The let command is used to assign vectors.

let [vecname [= expr]] [vecname = expr ...]

With no arguments, the list of vectors from the current plot is printed, similar to the display command.
If one or more arguments appear without an assignment, information about the named vectors is printed,
similar to the display command. Otherwise, for each assignment, a vector is created with name vecname
and value given by the expression expr .

238 CHAPTER 4. WRSPICE COMMANDS

In WRspice releases prior to 3.0.9, only a single assignment could appear in a let command. In
current releases, any number of assignemnts can be given in a single command line. The assignments
are performed left-to-right, so that expressions to the right of an assignment may make use of that
assignment, i.e., forms like

let a=1 b=a

work properly.

None of the vector options such as default scale, color, etc. that are read from the rawfile are
preserved when a vector is created with the let command.

The syntax

let a[N] = vec

with N a non-negative integer, is valid. If vec is a vector, then a[N] = vec[0], a[N+1] = vec[1], etc.,
If undefined, a is defined, and new entries that are not explicitly set are zeroed. The length of a is set
or modified to accommodate vec. The syntax a[0] = vec is also valid, and is equivalent to a = vec. If
vec is a vector, then a is a copy of vec. If vec is a scalar (unit length vector), then a is also a scalar with
the value of vec.

When assignment is from a scalar value, any SPICE number format may be used. That is, if
alpha characters appear after a number, the initial characters are checked as a scale factor. Recognized
sequences are t, g, k, u, n, p, f, m, meg, mil. Remaining characters are parsed as a units string. This is
all case insensitive.

The units suffix of a constant value is used to assign the units of any vector to which the constant is
assigned. This means, for example, in

let a = v(1)/15o

a has units of current (A). Use the settype command without arguments to see a list of recognized
types.

The “let” is actually optional; the let command will be applied to a line with the second token being
“=”. This is somewhat less efficient, however.

4.6.9 The linearize Command

This linearize command is used to create linearized vectors from vectors whose scales are not evenly
spaced.

linearize [vecname ...]

The command will force data from a transient analysis to conform to a linear scale, if the plot has been
created using raw timepoints. This is the case only when the steptype variable is set to “nousertp”.

The linearize command will create a new plot with all of the vectors in the current plot, or only those
mentioned if arguments are given. The new vectors will be interpolated onto a linear time scale, which
is determined by the values of tstep, tstart, and tstop in the currently active transient analysis. The
currently loaded deck must include a transient analysis, or a tran command may be run interactively,
and the current plot must be from this transient analysis. The variable polydegree determines the degree
of interpolation.

4.6. DATA MANIPULATION COMMANDS 239

4.6.10 The pick Command

The pick command creates a new vector from elements of other vectors.

pick vecname offset period vector [vector ...]

The command creates a vector vecname and fills it with every period ’th value starting with offset from
the vectors. The offset and period are integers. For example, for

pick xx 1 2 v1 v2

we obtain

xx[0] = v1[1]

xx[1] = v2[1]

xx[2] = v1[3]

xx[3] = v2[3]

and so on.

4.6.11 The seed Command

The seed command will reset the internal random number generator.

seed [seed integer]

The seed integer , if given, will be used to seed the new random number sequence. This command enables
sequences of “random” values obtained from functions like rnd and gauss to be repeatable (the default
seed is random).

4.6.12 The setplot Command

The setplot command can be used to set the current plot, or to create a new, empty plot and make it
the current plot.

setplot [plotname]

Here, the word “plot” refers to a group of vectors that are the result of one WRspice simulation run.
Plots are created in memory during a simulation run, or by loading rawfile data. When more than one
file is loaded in, or more than one plot is present in one file, WRspice keeps them separate and only
shows the vectors in the current plot. One generally accesses a given plot by first making it the current
plot.

The same functionality is available from the Plots button in the Tools menu. The setplot command
will set the current plot to the plot with the given plotname, or if no name is given, prompt the user
with a menu. The plots are named as they are loaded, by reading in a rawfile, or created by running

240 CHAPTER 4. WRSPICE COMMANDS

a simulation, with names like tran1 or ac2. These names are shown by the setplot and display
commands and are used by other commands.

The plotname can also be a numerical index. Plots are saved in the order created, and as listed by
the setplot command without arguments, and in the Plots tool. In addition to the plot name, the
following constructs are recognized. Below, N is an integer.

-N
Use the N ’th plot back from the current plot. N must be 1 or larger. For example, “setplot -1”
will set the current plot to the previous plot. The command will fail if there is no such plot.

+N
This goes in the reverse direction, indicating a plot later in the list than the current plot.

N
An integer without + or - indicates an absolute index into the plot list, zero-based. The value 0
will always indicate the “constants” plot, which is the first plot created (on program startup).

If the plotname is “new”, a new plot is created, which becomes the current plot. This plot has no
vectors.

The current plot can also be changed by resetting the curplot variable. There are three read-only
variables which are reset internally whenever the current plot changes. Each contains a string describing
a feature of the current plot. These are curplotdate, curplotname, and curplottitle.

4.6.13 The setscale Command

The setscale command is used to set the vector used as a scale when plotting other vectors.

setscale [plot or vector] [vectors ...]

Each plot has a default scale, which can be set with this command. Each vector has a scale variable,
which if set will override the default scale of the plot. These also can be set with this command. This
command takes as input the names of a plot and a new scale vector in that plot, or the names of vectors
from the current plot. The wildcard forms using “all” and the plot prefix form plot .vector are not
allowed in this command. If only one argument is given, i.e.

setscale vector

then vector is assigned as the default scale of the current plot. The vector must already exist in the
current plot.

If two arguments are given, the first argument is initially interpreted as the name of a plot, and
the second argument is the name of a vector in that plot to use as the scale. The plot has names like
“tran1” or “ac2” and the vector must exist in that plot.

If the first argument is not a plot name, or there are more than two arguments, the arguments are
expected to be vectors in the current plot, and the last vector will be assigned as the scale for the other
listed vectors.

The scales assigned to vectors can be removed by assigning the vector that is the current default scale
for the plot, or the scale vector name given can have the special names “none” or “default”. The scale
for plots can’t be removed, since a plot must always have a default scale (if any vectors are defined).

4.6. DATA MANIPULATION COMMANDS 241

The let command without arguments lists the vectors and will show the scales, if any.

4.6.14 The settype Command

The settype command is used to change the data types of the vectors in a plot.

settype [type] [vector ...]

The command will change the type of the named vectors to type. With no arguments, the list of
recognized types and abbreviations is printed. The type field can consist of a single name, or a single
token containing a list of abbreviations. The token list can contain a digit power after an abbreviation,
and a single ‘/’ for denominator units. Examples are “F/M2”, “Wb2/Hz”. Units of vectors generated
during analysis are set automatically.

The WRspice numerical input format (see 2.1.2) allows the type to be specified when a value is given
to WRspice, either interactively or in an input file.

Type names can also be found in the description of the rawfile format in A.1, or they may be
defined with the deftype command. However, only the primitive types listed below propagate through
expressions and are recognized by the WRspice type-propagation system.

The primitive built-in types and abbreviations are:

time S
frequency Hz
voltage V
current A
charge Cl
flux Wb
capacitance F
inductance H
resistance O
conductance Si
length M
area M2
temperature C
power W

The codes from the rawfile are:

242 CHAPTER 4. WRSPICE COMMANDS

Name Description SPICE2 Numeric Code

notype Dimensionless value 0
time Time 1
frequency Frequency 2
voltage Voltage 3
current Current 4
output-noise SPICE2 .noise result 5
input-noise SPICE2 .noise result 6
HD2 SPICE2 .disto result 7
HD3 SPICE2 .disto result 8
DIM2 SPICE2 .disto result 9
SIM2 SPICE2 .disto result 10
DIM3 SPICE2 .disto result 11
pole SPICE3 pz result 12
zero SPICE3 pz result 13

4.6.15 The spec Command

The spec command will create a new plot consisting of the Fourier transforms of the vectors given on
the command line.

spec start freq stop freq step freq vector [...]

This is based on a SPICE3 spec command by Anthony Parker of Macquarie University in Sydney
Australia, which is available as part of the patch set from
http://www.elec.mq.edu.au/cnerf/spice/spice.html.

The command will create a new plot consisting of the Fourier transforms of the vectors given on
the command line. Each vector given should be a transient analysis result, i.e., have time as a scale,
and each should have the same time scale. The Fourier transform will be computed using the frequency
parameters given, and will use a window function as given with the specwindow variable.

The following variables control operation of the spec command. Each can be set with the set
command, or equivalently from the Fourier tab of the Commands tool.

spectrace
This enables messages to be printed during Fourier analysis with the spec command, for debugging
purposes.

specwindow
This variable is set to one of the following strings, which will determine the type of windowing
used for the Fourier transform in the spec command. If not set, the default is hanning.

bartlet Bartlet (triangle) window
blackman Blackman order 2 window
cosine Hanning (cosine) window
gaussian Gaussian window
hamming Hamming window
hanning Hanning (cosine) window
none No windowing
rectangular Rectangular window
triangle Bartlet (triangle) window

4.7. GRAPHICAL OUTPUT COMMANDS 243

specwindoworder
This can be set to an integer in the range 2–8. This sets the order when the gaussian window is
used in the spec command. If not set, order 2 is used.

4.6.16 The undefine Command

The undefine command is used to undefine user-defined functions that have previously been defined
with the define command.

undefine word [...]

The command deletes the definitions of the user-defined functions passed as arguments. If the argument
is “*”, then all macro functions are deleted. Note that all functions with the given names are removed,
so there is no way to delete a function with a particular argument count without deleting all functions
with that name.

4.6.17 The unlet Command

The unlet command will delete the vectors listed as arguments.

unlet vecname [...]

The current plot is assumed, though the plot .vector notation is accepted. When the default scale vector
is deleted, another random vector will become the default scale. The names can be “all”, indicating
that all matching vectors should be removed. If the vector name is “all”, all vectors in the plot are
removed, but the plot itself is not deleted. Giving “all.all” will clear the vectors in all plots (not very
useful). To delete a plot, use the destroy or free commands.

4.7 Graphical Output Commands

The following commands display the output of simulations graphically, either on-screen or on a printing
device. Many take as input a list of vectors or expressions to plot, and in some cases ambiguities may
arise. An example would be

plot v(1) -v(2)

which would be interpreted as a plot of the difference between the vectors (1 trace) rather than two
traces. To resolve such ambiguities, double quotes may be used, as in

plot v(1) "-v(2)"

which enforses interpretation as separate expressions. Additional parentheses may also be used to the
same effect.

In the expression list, a “.” token is replaced with the vector list found in a .plot line from the file
with the same analysis type as the current plot. For example, if the input file contained

244 CHAPTER 4. WRSPICE COMMANDS

.tran .1u 10u

.plot tran v(1) v(2)

then one can type “run”, then “plot .” to plot v(1) and v(2).

Graphical Output Commands
asciiplot Generate line printer plot
combine Combine plots
hardcopy Send plot to printer
iplot Plot during simulation
mplot Plot range analysis output
plot Plot simulation results
xgraph Plot simulation results using xgraph

4.7.1 The asciiplot Command

The asciiplot command generates a crude plot on a character mode device. It is not often used in
modern environments, but is retained for compatibility with SPICE2.

asciiplot plotargs

The plotargs are vectors or expressions to be plotted, as with the plot command. The plot is sent to
the standard output, so one can put it into a file by using redirection. The variables width, height, and
nobreak determine the width and height of the plot, and whether there are page breaks, respectively,
though if the asciiplot is printed on-screen or in a window, the plot width and height are determined
by the window size.

There are problems if one tries to plot something with an X scale that is not monotonic, because
asciiplot uses a simple-minded sort of linear interpolation. Also, most of the variables that the plot
command recognizes aren’t used by asciiplot. The scaling and other variables can be set with the set
command as for the plot command. These variables can also be set with the Plot Defs tool from the
Tools menu of the Tool Control window.

The nointerp variable is used only by the asciiplot command. Normally asciiplot interpolates data
onto a linear scale before plotting it. If this option is given this won’t be done — each line will correspond
to one data point as generated by the simulation. Since data are already linearized unless from a transient
analysis with steptype set to nousertp, setting this variable will avoid a redundant linearization.

Ordinarily, the first vector plotted has its values also printed in the first column. This can be
suppressed by setting the variable noasciiplotvalue. When printing, the number of significant digits used
can be set with numdgt variable.

This command is completely obsolete, but is retained for nostalgia for those who fondly remember
punched cards and line printers.

4.7.2 The combine Command

The combine command takes no arguments. The command will combine the two most recent plots,
if similar, into a single plot, and expands the dimensionality of the resulting plot. The two plots must
have identical vector names and compatible lengths. The purpose of this command is to create a single

4.7. GRAPHICAL OUTPUT COMMANDS 245

multi-dimensional plot from sequences of runs. The most recent plot is added to the end of the previous
plot, and is deleted.

Example:

while i < 5

(set parameters for run)
run

if i > 0

combine

end

i = i + 1

end

This will combine all the data from the five runs into a single plot.

4.7.3 The hardcopy Command

The hardcopy command is used to generate hardcopy plots of simulation data on a printer or plotter.
This capability is similar to the Print button which appears on each of the on-screen plots from the
plot command.

hardcopy [setupargs] plotargs
setupargs: -d driver -c command -f filename -r resolution -w width -h height
-x left marg -y top marg -l

This command uses the internal hardcopy drivers to generate a hard copy of the vectors and expressions
given in plotargs. The plotargs are vectors or expressions to be plotted, as with the plot command. If
no plotargs are provided, the arguments are taken to be the same as those given to the last plotting
command given (these include plot, asciiplot, hardcopy, and xgraph). The setupargs override the
current values established using the set command or the Plot Defs tool in the Tools menu, and default
to the driver defaults if not specified either way.

The -d driver specifies the name of a hardcopy driver using one of the keywords known to the
hcopydriver variable. If the -d option is not specified, the hcopydriver variable will be used if set. If no
driver is set, or set to an unrecognized driver name, the hardcopy is aborted.

The -c command option specifies the operating system command used to send the job to the printer,
and overrides the value of the hcopycommand variable, which is otherwise used if set. The value is a
string (which must be quoted it it contains space), where the characters “%s” are replaced by the name
of the (possibly temporary) file used to store the plot data. If no %s appears, the file name is appended
to the end of the command string. In BSD Unix, the command string might be “lpr -h -Pmyprinter”,
for example. See the man page for the print command on your machine for more information. If there
is no command string given using the -c option and hcopycommand is undefined, the data will be saved
in a file, but not printed.

The -f filename option gives a file name to store the plot data. There is no analogous “set” variable.
If given, the plot will be saved in the file, and not sent to the printer.

The -r resolution command will set the printer to use the specified resolution, if that resolution is
supported by the driver and the printer. If not given, the value of hcopyresol is used, if set, otherwise
the driver default is used. The default is almost always the best choice.

246 CHAPTER 4. WRSPICE COMMANDS

The -w width and -h height options set the size of the image as it would appear on a portrait-oriented
page. The numbers given represent inches, unless followed by “cm” which indicates centimeters. If these
options are not given, the hcopywidth and hcopyheight variables are used if set, otherwise the driver
defaults are used.

The -x xoffset and -y yoffset options control the position of the image on the page, as defined in
portrait orientation. The yoffset may be measured from the top or bottom of the page, depending upon
the driver. These values default to those in the variables hcopyxoff and hcopyyoff if set, otherwise driver
defaults are used. The numbers represent inches, unless followed by “cm” indicating centimeters.

If the -l option is given, or the hcopylandscape variable is set, the image will be rotated and printed
in landscape orientation.

The variables which control plot presentation also control the presentation of the hardcopy (see 4.7.6).
The hardcopy command is suited for use in scripts. For general plotting, the Print button in the plot
windows brings up a panel which provides a superior user interface.

4.7.4 The iplot Command

The iplot command adds an incremental plot to the “debug” list. While a simulation is running, the
plots will be generated, allowing immediate feedback as to whether the simulation is producing the
“right” results.

iplot plotargs

The iplots can be deleted with the delete command, and can also be specified and deleted using the
panel brought up by the Trace button in the Tools menu. The status command will list the “debugs”,
including iplots. The plotargs are vectors or expressions to be plotted, as with the plot command. The
variables which control plotting also apply to iplots. These are set with the set command, or with the
Plot Defs tool in the Tools menu of the Tool Control window.

If an iplot command is given at the prompt in interactive mode, it is placed in a global list, and
activity will persist until deleted (with the delete command or with the Trace tool). If the command
is given in a file, the command will be added to a list for the current circuit, and will apply only to that
circuit. Thus, for example, a WRspice file can contain lines like

*# iplot v(1)

and the iplot will be performed as that circuit is run, but the “iplot v(1)” directive will not apply to
other circuits.

4.7.5 The mplot Command

The mplot command is used to plot the results from margin analysis, which includes operating range
and Monte Carlo analyses. It is also used to set and clear interactive margin analysis plotting.

mplot [[-on|-off] | [-c][filename ...] | vector]

The filenames are names of files produced by the margin analysis. If no file is specified, the file produced
by the last margin analysis run in the current session is assumed. If no margin analysis files have been

4.7. GRAPHICAL OUTPUT COMMANDS 247

produced in the current session, the file named “check.dat” is assumed. It is also assumed that these
files exist in the current directory. The name of the most recent margin analysis output file produced in
the current session is saved in the mplot cur variable.

The results from operating range/Monte Carlo analysis are also hidden away in the resulting plot
structure. The mplot can be displayed by entering “mplot vector” where vector is any vector in the
plot.

The vector can actually be any multi-dimensional vector, from margin analysis or not. The selections
(see below) can then be used to determine which dimensions are displayed in subsequent plots.

The -c option combines the operating range data from the files on the command line into a single
display, if possible. Thus, if two or more successive operating range analysis runs are required to obtain
the total operating range, then it is possible to plot all of the results on a single graph with the -c

option. The data must have identical coordinate spacing and projected origins to be combinable.

There are two switches, -on and -off, which control whether or not operating range analysis results
are plotted on the screen during analysis, similar to the iplot command. Entering mplot -on will cause
margin analysis results to be plotted while simulating, and mplot -off will turn this feature off.

The display consists of an array of cells, each of which represent the results of a single trial. As the
results become available, the cells indicate a pass or fail. In operating range analysis, the cells indicate
a particular bias condition according to the axes. In Monte Carlo analysis, the position of the cells has
no significance. In this case the display indicates the number of trials completed.

The panel includes a Help button which brings up the appropriate topic in the help system, a
Redraw button to redraw the plot if, for example, the plotting colors are redefined, and a Print button
for generating hard copy output of the plot.

Text entered while the pointer is in the mplot window will appear in the plot, and hardcopies. This
text, and other text which appears in the plot, can be edited in the manner of text in plot windows.

4.7.5.1 Selections

The cells in an mplot can be selected/deselected by clicking on them. Clicking with button 1 will
select/deselect that cell. Using button 2, the row containing the cell will be selected or deselected, and
with button 3 the column will be selected or deselected. A selected cell will be shown with a colored
background, with an index number printed.

Only one mplot window can have selections. Clicking in a new window will deselect all selections in
other mplot windows.

At present, the selections are used to facilitate plotting of multidimensional plots, such as those
obtained from the -k option of the check command. If selections exist, only the data from the selected
cells will be plotted from the associated multidimensional vectors in the plot command.

For example, after running “check -k”, suppose one has a resulting vector v(1) (which will contain
data from all of the trials). If not using “mplot -on” during the run, one can type “mplot” after the run
to display the pass/fail results. In the mplot window, select one of the cells. Then, “plot v(1)” will
plot the v(1) from that trial only. If no cells are selected, or all cells are selected, “plot v(1)” would
show the superimposed v(1) traces from all trials. The index number that appears in the cell is the
vector index, so for example if a single box is selected with index 4, “plot v(1)” would be equivalent to
“plot v(1)[4]”. Note that the selection mechanism allows combinations of traces to be plotted which
can’t easily be obtained from indexing.

248 CHAPTER 4. WRSPICE COMMANDS

This capability is carried a step further for general multidimensional plots. If one enters “mplot
vector” where vector is the name of a multidimensional vector from whatever source, an mplot will
appear. If the vector originated from operating range or Monte Carlo analysis, the resulting mplot will
appear (the pass/fail results are saved in the plot structure, as well as in the output file). Otherwise,
the mplot has nothing to do with range analysis, and all cells are marked ”fail”. Either case allows the
selection mechanism to be used for displaying the plots.

Suppose for example one has a multidimensional plot from a loop-transient analysis. Entering “mplot
time” will bring up a dummy mplot whose cells represent the loop iterations (time is the scale vector
for the plot, but any data vector in the plot would suffice). Then, by selecting the cells, one can choose
which iterations will be visible when vectors from the plot are plotted with the plot command.

The plot window will use a “flat” dimension map which can subsequently be used to control which
dimensions are visible. The mplot selections set the initial state of this map.

4.7.6 The plot Command

The plot command is used to plot simulation output on-screen. Each execution of a plot command will
bring up a window which displays the plot, along with several command buttons. Each plot will remain
on-screen until dismissed with the Dismiss button.

plot [expr ...] [vs x-expr] [attributes]

The set of expressions can be followed with a “vs x-expr” clause, which will produce an x-y plot using
the values of x-expr as the x scale.

If no arguments are given, the arguments to the last given plot command are used. If the argument
list contains a token consisting of a single period (“.”), this is replaced with the vector list found in the
first .plot line from the input file with the same analysis type as the current plot. For example, if the
input file contains

.tran .1u 10u

.plot tran v(1) v(2)

then one can type “run” followed by “plot .” to plot v(1) and v(2).

The related syntax .@N is also recognized, where N is an integer representing the N ’th matching
.plot line. The count is 1-based, but N=0 is equivalent to N=1. The token is effectively replaced by
the vector list from the specified .plot line found in the circuit deck.

Vectors and expression results will be interpolated to the scale used for the plot. This applies when
using forms like “tran2.v(2)” where the tran2 may have a different scale, for example the x-increment
may be different, or the data may correspond to internal time points vs. user time points.

The plot style can be controlled by a number of variables (listed below), which can be set with the
set command. These define default behavior, as the plot window contains buttons which also determine
presentation. The Plot Defs tool from the Tools menu of the Tool Control window can also be used
to set these variables. The Colors tool from the Tools menu can be used to change the colors used for
plotting.

For each of the variables listed in the table below with an asterisk in the middle column, if a variable
named temp varname is defined, its value will be used rather than that of varname. This allows

4.7. GRAPHICAL OUTPUT COMMANDS 249

temporary overriding of the nominal settings of the variables, and is used internally for the zoom-in
operation. In addition, there are certain variables such as gridstyle which can be set to one of several
keywords. If the keyword itself is set as a boolean variable, it will override the string variable. For
example, one could issue “set gridstyle = lingrid” to set a nominally linear grid. This can be
changed by, for example, “set loglog” (or “set temp loglog”), but it is an error to have two or more
such keywords set as booleans at a time.

The variables with an asterisk in the middle column can appear in a .options line in a circuit file.
The option will be in force when the circuit containing this line is the current circuit.

Many of these attributes can also be set from the plot command line, which will override any
corresponding variable, if set. The functionality is as described for the variables. The “value” of the
variables (if any) should follow the keyword, separated by space and/or an optional ‘=’ character. For
values consisting of two numbers, a comma and/or space can delimit the numbers. The variable names
that are also recognized as command line keywords are shown with an asterisk in the third column in
the table below.

Variable temp name? Attribute?
color

combplot * *
gridsize

gridstyle

group * *
lingrid * *
linplot * *
loglog * *
multi * *
nogrid * *
nointerp * *
noplotlogo * *
plotposn

plotstyle

pointchars

pointplot * *
polar * *
polydegree

polysteps

scaletype

single * *
smith * *
smithgrid * *
ticmarks

title * *
xcompress * *
xdelta * *
xindices * *
xlabel * *
xlimit * *
xlog * *
ydelta * *
ylabel * *

250 CHAPTER 4. WRSPICE COMMANDS

ylimit * *
ylog * *
ysep * *

When a plot is read from a rawfile, defaults for the presentation attributes are set as specified in
the rawfile. These can be overridden by reseting the attributes in WRspice, with the exception of the
color specification in the rawfile. If given, that color will be used for a particular trace independent of
the current setting within WRspice. WRspice never sets the color specification, when writing a rawfile,
unless that color was indicated from a previous rawfile. If a certain unalterable color is desired for a
trace, the rawfile can be edited with a text editor to specify that color.

Any text typed while the pointer is in the plot window will appear on the plot (and hardcopies).
This is useful for annotation. Entered and existing text can be edited and moved. In addition, traces in
the plot can be moved to change the order, or moved to other (x-scale compatible) plot windows. The
description of the plot window (3.11) contains more information.

4.7.7 The xgraph Command

The xgraph command will produce plots using the UNIX xgraph utility.

xgraph file plotargs

This command is similar to the plot command, however the xgraph program (an obsolete plotting
package) actually generates the plots. If the given file is either “tmp” or “temp”, then a temporary file
is used to hold the data while being plotted. Polar and Smith plots are not supported, otherwise the
variables associated with the plot command apply.

The xglinewidth variable specifies the line width in pixels to use in the plots. If not set, a minimum
line width is used.

If xgmarkers is set, point plots will use cross marks, otherwise big pixels are used.

4.8 Miscellaneous Commands

These commands perform miscellaneous functions.

Miscellaneous Commands
bug Submit bug report
help Enter help system
helpreset Clear help system cache
qhelp Print command summaries
quit Exit program
rusage Print resource usage
version Print program version

4.8. MISCELLANEOUS COMMANDS 251

4.8.1 The bug Command

The bug command facilitates sending bug reports and other messages to the WRspice administrator.
Issuing the bug command will pop up a mail editing window if graphics is available, or will allow a
message to be entered on the command line if not. The environment variable SPICE BUGADDR is used
to set the internet address to which bug reports are sent (this can be changed in the pop-up mail editor
window). If not set, the report is sent to the Whiteley Research technical support staff. This command
takes no arguments.

The mail editor window can also be displayed by pressing the WR button in the Tool Control
window.

4.8.2 The help Command

The help command brings up a help window describing the topic keyword passed as an argument to
the command, or the top-level entry if no argument is given.

help [-c | topic]

When graphics is not available, the help text is presented in a text-only format on the terminal. The
HTML to ASCII text converter only handles the most common HTML tags, so some descriptions may
look a little strange. The figures (and all images) are not shown, and links are not available, except for
the “subtopics” and “references” lists.

The help data files are found in directories specified in the helppath variable, or from the
SPICE HLP PATH environment variable. If for some reason the help directory is not found, a very
minimal internal text-mode help system will be provided. The single character ‘?’ is internally aliased
to “help”.

If the single argument “-c” is given, the internal topic hash tables are cleared. Since the topics are
hashed as offsets into the files, if a topic text changes, the offsets will be incorrect. After changes are
made to a help file, or new help files are added, if in WRspice and the help database has already been
cached by viewing any help topic, giving “help -c” will ensure that new topics are found and present
topics display correctly. This is the same effect as giving the helpreset command.

The helpinitxpos variable specifies the distance in pixels from the left edge of the screen to the left
edge of the help window, when it first appears. If not set, the value taken is 100 pixels. The helpinitypos
variable specifies the distance in pixels from the top edge of the screen to the top edge of the help
window, when it first appears. If not set, the value taken is 100 pixels.

See 3.14 for more information about the WRspice help system.

4.8.3 The helpreset Command

This will clear the internal topic cache used by the help system. The cache saves topic references as
offsets into the help (.hlp) files, so that if the text of a help file is modified, the offsets are probably
no longer valid. This function is useful when editing the text of a help file, while viewing the entry
in WRspice. Use this function when editing is complete, before reloading the topic into the viewer.
Although the offset to the present topic does not change when editing, so that simply reloading would
look fine, other topics in the file that come after the present topic would not display correctly if the
offsets change.

252 CHAPTER 4. WRSPICE COMMANDS

This is the same effect as giving the help command with the -c option.

4.8.4 The qhelp Command

The qhelp command prints a brief description of each command listed as an argument. If no arguments
are given, all commands are listed. This is not part of the main help system.

4.8.5 The quit Command

The quit command terminates the WRspice session. If there are circuits that are in the middle of a
simulation, or plots that have not been saved in a file, the user is reminded of this and asked to confirm.
The variable noaskquit disables this. WRspice can also be terminated from the Quit button in the File
menu of the Tool Control window. The command takes no arguments.

4.8.6 The rusage Command

The rusage command is used to obtain information about the consumption of system resources and
other statistics during the WRspice session.

rusage [all] [resource ...]

If any resource keywords are given, only those resources are printed. All resources are printed if the
keyword all is given. With no arguments, only total time and space usage are printed. The show
command can also be used to obtain resource statistics. The recognized keywords are listed below.

accept

This keyword prints the number of accepted time points from the last transient analysis.

elapsed

This keyword prints the total amount of time that has elapsed since the last call of the rusage
command, or to the program start time.

faults

This keyword prints the number of page faults caused by the program thus far.

loadtime

If given, print the time spent loading the matrix in the last simulation run. This includes the time
spent in computation of device characteristics.

lutime

The lutime keyword will print the time spent in LU factorization of the matrix during the last
simulation run.

rejected

This keyword prints the number of rejected time points in the last transient analysis.

solvetime

This will print the time spent solving the matrix equations, after LU decomposition, in the last
simulation run.

4.9. VARIABLES 253

space

This keyword will print the memory presently in use by WRspice.

time

This keyword will print the CPU time used by the last simulation run.

totaltime

If this keyword is given, the total CPU time used in the present session will be printed.

totiter

This keyword prints the total number of Newton iterations used in the last analysis.

traniter

The traniter keyword will print the number of iterations used in the last transient analysis. This
does not include iterations used in the operating point calculation, unlike totiter which includes
these iterations.

tranpoints

This keyword prints the number of internal time steps used in the last transient analysis.

transolvetime

This keyword prints the matrix solution time required by the last transient analysis.

trantime

This keyword will print the total time spent in transient analysis in the last transient analysis.

4.8.7 The version Command

The version command is used to determine the version of WRspice running.

version [version name]

With no arguments, this command prints out the current version of WRspice. If there are arguments,
it compares the current version with the given version and prints a warning if they differ. A version
command is usually included in the rawfile.

4.9 Variables

Shell variables can be set from the shell with the set command. In addition, shell variables are set which
correspond to definitions supplied on the .options line of the current circuit, and there are additional
shell variables which are set automatically in accord with the current plot. The shell variables that
are currently active can be listed with the set command given without arguments, and are also listed
within the Variables window brought up from the Tools menu of the Tool Control window. In these
listings, a ‘+’ symbol is prepended to variables defined from a .options line in the current circuit, and
a ‘∗’ symbol is prepended to those variables defined for the current plot. These variable definitions will
change as the current circuit and current plot change. Some variables are read-only and may not be
changed by the user, though this is not indicated in the listing.

Before a simulation starts, the options from the .options line of the current circuit are merged with
any variables of the same name that have been set using the shell. The result of the merge is that options
that are booleans will be set if set in either case, and those that take values will assume the value set

254 CHAPTER 4. WRSPICE COMMANDS

through the shell if conflicting definitions are given. The merge will be suppressed if the shell variable
noshellopts is set from the shell, in which case the only options used will be those from the .options

line, and those that are redefined using the set command will be ignored.

There are many shell variables that have special meaning to WRspice. Note the difference between
a variable and a vector — a variable is manipulated with the commands set and unset, and may be
substituted in a command line with the $varname notation. A vector is a datum which can be plotted,
manipulated algebraically, and so forth.

While any variable may be set, only the following ones will have any significance to WRspice. In
general, variables set in the .options line are available for expansion in $varname references, but do
not otherwise affect the shell.

4.9.1 Syntax Control Variables

These variables alter the expected syntax of various types of WRspice input. It may, on occasion, be
useful or necessary to use one or more of these variables to provide compatibility with SPICE input
intended for another simulator, or for compatibility with earlier releases of WRspice.

hspice
When set, many of the HSPICE parameters and keywords that are not handled are silently ignored.
Ordinarily, these produce a warning message. In particular, when set:

1. The following MOS model parameters are silently ignored.

acm

alpha

binflag

calcacm

capop

cjgate

cta

ctp

dtemp

hdif

iirat

lalpha

ldif

lmlt

lref

lvcr

mismatchflag

nds

pta

ptp

rd

rdc

rs

rsc

scale

scalm

sfvtflag

sigma

tlev

tlevc

vcr

vnds

walpha

wmlt

wref

wvcr

xl

xw

2. The following BJT model parameters are silently ignored.

iss ns tlev tlevc update

3. The following MOS device parameters are silently ignored.

dtemp

4. The following control lines are silently ignored.

.alias

.alter

.connect

.data

.dellib

.dout

.global

.graph

.hdl

.lin

.malias

.protect

.stim

.unprotect

modelcard
This variable allows the keyword that specifies a model to be reset. If unset, the keyword is
“.model”.

nobjthack
If this boolean is set, bipolar transistors are assumed to have four nodes. Otherwise, three nodes
are acceptable. This only affects subcircuit expansion.

plot catchar
One can specify a fully qualified vector name as input to WRspice, where the default syntax is

4.9. VARIABLES 255

plotname.vectorname

The character used to separate the plotname from the vectorname, which defaults to a period (‘.’),
can be changed with this variable. If this variable is set to a single-character string, then that
character becomes the separation character.

spec catchar
By default, vector names that begin with the character ‘@’ are interpreted as “special” vectors that
provide the value of a model, device, or circuit parameter. These have forms like

@devicename[paramname] for a device parameter,
@modelname[paramname] for a model parameter, or
@paramname for a circuit parameter.

The character used to indicate a special vector can be changed from the default ‘@’ with this
variable. If this variable is set to a single-character string, then that character is used to indicate
a special vector.

strictnumparse
When this variable is set, WRspice will not allow trailing characters after a number, unless they
are separated from the number with an underscore (‘ ’). This may prevent errors, for example
writing “1meter” and expecting it to have a value of 1.

subc catchar
When WRspice processes an input circuit containing subcircuits, it internally generates a “flat”
representation of the circuit through subcircuit expansion. All subcircuit calls are replaced with
the subcircuit body text, and the node and device names in the subcircuit are given new names
that are unique in the overall circuit. One can view this flattened representation with the listing
e command.

This variable can be set to a string consisting of a single punctuation character, which will be used as
the field separation character in names generated in subcircuit expansion. It should be a character
that is not likely to confuse the expression parser. This requirement is rather ambiguous, but
basically means that math operators, comma, semicolon, and probably others should be avoided.

In release 3.2.15 and later the default is ‘.’ (period), which is also used in HSPICE, and provides
nice-looking listings.

In releases 3.2.5 – 3.2.14, the default was ‘ ’ (underscore).

In release 3.2.4 and earlier, and in Spice3, the concatenation character was ‘:’ (colon).

This variable can appear in a .options line in SPICE input, where is will set the concatenation
character used for the circuit. See also the description of the subc catmode variable below.

subc catmode
When WRspice processes an input circuit containing subcircuits, it internally generates a “flat”
representation of the circuit through subcircuit expansion. All subcircuit calls are replaced with
the subcircuit body text, and the node and device names in the subcircuit are given new names
that are unique in the overall circuit. One can view this flattened representation with the listing
e command.

Previous WRspice versions used the Spice3 algorithm for generating the new node and device
names. Release 3.2.15 and later have a new, simpler algorithm as the default, but support for the
old algorithm is retained.

This string variable can be set to one of the keywords “wrspice” or “spice3”. It sets the encoding
mode for subcircuit node and device names. In 3.2.15 and later, the “wrspice” mode is the default.
In earlier releases, only the “spice3” mode was available.

256 CHAPTER 4. WRSPICE COMMANDS

A detailed discussion of the two mapping modes is provided in the description of subcircuit expan-
sion in 2.6.1.1.

Typically, the user may not know or care about subcircuit mapping details, however in some SPICE
input it may be necessary to reference subcircuit nodes in .save lines and elsewhere. In this case
knowledge of, and control of, the mapping employed is necessary.

There is also a compatibility issue with older WRspice input files that explicitly reference subcir-
cuit nodes, as both the default renaming algorithm and concatenation character have changed as
WRspice evolved. The format of the subcircuit node names depends on the algorithm, so SPICE
input that explicitly references subcircuit node names implicitly assuming a certain mapping algo-
rithm will require either changes to the node names, or specification of the matching algorithm and
concatenation character. Such files can be easily updated to be compatible with newer WRspice

releases, but some familiarity with the renaming modes is needed.

This variable can appear in a .options line in SPICE input, where is will set the name mapping
algorithm used for the circuit. Typically, to “fix” an old input file, one would add a .options line
specifying the spice3 mapping algorithm, and either the colon or underscore (as appropriate) for
the concatenation character.

subend
This variable allows the keyword which ends a subcircuit definition to be changed. If unset, the
keyword is “.ends”.

subinvoke
This variable allows the prefix which invokes a subcircuit to be changed. If unset, the prefix is “x”.

substart
This variable allows the keyword which begins a subcircuit definition to be changed. If unset, the
keyword is “.subckt”. The equivalent “.macro” keyword applies whether or not this variable is
set.

units catchar
A “units string” can follow numbers given to WRspice, and these units are carried through ex-
pressions, simplified, and printed with results. The units string follows a number, separated by
a separation character which is most often optional. In releases prior to 3.2.4, this character was
hard coded to ‘ ’ (underscore), but presently defaults to ‘#’ to avoid conflict with the subcircuit
field separator character.

The character used as the units separation character can be changed by setting this variable to
a length-one string containing the new character. The character in the single-character string
becomes the new separation character. For example,

set units catchar = " "

will return to the pre-3.2.4 default.

Further, it is now possible to add “denominator units”, which was not possible in pre-3.2.4 releases.
A second appearance of the separation character, or the first appearance if there was no separation
character ahead of the units string, is logically like ‘/’, and units that follow are denominator units.

Examples:

4.9. VARIABLES 257

1.0#F#S 1 Farad per second
1.0F#S 1 femtosecond (note that ’F’ can be a multiplier or a unit!)
1.0FS 1 femtosecond
1.0#FS 1 Farad-second
1.0S 1 second
1.0#S 1 second
1.0##S 1 Hertz

var catchar
When expanding shell variables, i.e. replacing forms like “$var” in WRspice input with the value
that has been assigned to var, it is sometimes useful to use the “concatenation character”, which
defaults to ‘%’, to separate the variable name from surrounding text.

For example, if “set one = 1” is active, then “$one%k” will expand to “1k”. Note that it is also
possible to use the form “{$one}k” to achieve the same objective.

The same applies when expanding parameters in SPICE input, using definitions from a .param

line. If one has “.param one=1” in scope, then “one%k” expands to “1k”.

This variable allows the default concatenation character ‘%’ to be changed. If this variable is set
to a single-character string, then that character becomes the concatenation character.

4.9.2 Shell Variables

These variables control behavior of the WRspice shell. Most of these variables can be set indirectly from
the Shell tool in the Tools menu of the Tool Control window.

argc
This read-only variable is set to the number of arguments used to invoke the currently executing
script, including the script name. This can be referenced from within scripts only.

argv
This is a read-only list of tokens from the invoking line of the currently executing script, including
the script name. This can be referred to within scripts only.

cktvars
When this boolean variable is set with the set command or the Shell tool (not in a SPICE
.options line), variables set in the .options line of the current circuit will be treated the same
as variables set with the set command.

With this variable unset, the legacy behavior is maintained, i.e., variables set in .options will
work in variable substitution, but will be ignored in most commands.

In releases prior to 2.2.61, when a variable is set in a .options line, it becomes visible almost like
it was set with the set command, when the circuit containing the .options line is the current
circuit. In the variables listing (set command without arguments or the Variables tool), these
have a ‘+’ in the first column. However, they are not part of the normal variable database, and
they only “work” in special cases. For example, they will work in variable substitution, but won’t
affect the defaults in most commands, such as the plot command. If the same variable is also set
with set, the set definition will have precedence. The variables set with .options can’t be unset,
except by changing the current circuit.

This was confusing to the user. If a .options line contains an assignment for a plot-specific
variable (for example), the variable will appear to be active when listed, but it will have no effect
on the plot command.

258 CHAPTER 4. WRSPICE COMMANDS

It can be argued that making the circuit variables behave the same as those set with the set
command would be an improvement. In this case, variables listed in the set or Variables tool
listing will always have effect, and one can set any variable in the .options line, and have it always
“work”.

On the other hand, circuit variables can’t be unset, so a variable in the current circuit would
always have effect, desired or not. Also, changing present behavior would possibly adversely affect
existing users who expect the current behavior, and this change might break existing scripts.

The cktvars variable gives the user control over how to handle the circuit variables.

height
This variable sets the number of lines assumed in a page to use when printing output to a file. It
will also be used for standard output if for some reason WRspice cannot determine the size of the
terminal window (or has no terminal window). If not set, 66 lines will be assumed.

history
The history variable sets the number of commands saved in the history list. The default is 1000.

ignoreeof
If this boolean variable is set, the EOF character (Ctrl-D) is ignored in file input. If not set, an
EOF character will terminate the input. When typed as keyboard input, Ctrl-D prints a list of
completion matches, if command completion is in use.

noaskquit
If this variable is set, WRspice will skip the exit confirmation prompting it there are simulations
in progress or unsaved data when a quit command has been given.

nocc
If this boolean variable is set, command completion will be disabled.

noclobber
If this boolean variable is set, files will not be overwritten with input/output redirection.

noedit
By default, command line editing is enabled in interactive mode, which means that WRspice takes
control of the low level functions of the terminal window. This can be defeated if noedit is set. If
the terminal window doesn’t work properly with the editor, it is recommended that “set noedit”
appear in the .wrspiceinit file. Note that the command completion character is Tab when editing
is on, and Esc otherwise.

This variable is ignored under Microsoft Windows. The editing is always enabled in that case.

noerrwin
In interactive mode, error messages are generally printed in a separate pop-up window. When
this variable is set, error messages will appear in the console window instead. This variable is
automatically set when WRspice is started in JSPICE3 emulation mode (-j command line option
given).

noglob
If this boolean variable is set, global pattern matching using the characters ‘*’, ‘?’, ‘[’, and ‘]’ is
disabled. This variable is set by default, since ‘*’ is often used in algebraic expressions.

nomoremode
If nomoremode is not set, whenever a large amount of text is being printed to the screen (e.g., from
the print or asciiplot commands), the output will be stopped every screenful and will continue
when a character is typed. The following characters have special meaning:

4.9. VARIABLES 259

q Discard the rest of the output
c Print the rest of the output without pausing
? Print a help message

If nomoremode is set, all output will be printed without pauses.

nonomatch
If set, and noglob is unset and a global expression cannot be matched, the global characters will
be used literally. If not set, lack of a match produces an error.

nosort
If this boolean is set, lists of output are not sorted alphabetically.

prompt
This variable contains a string to use as the command prompt. In this string, the ‘!’ character
is replaced by the event number, and “-p” is replaced by the current directory. If the program is
reading lines which form a part of a control block, the prompt becomes a set of ‘>’ characters, one
for each level of control structure. The default prompt is “$program ! − > ”.

sourcepath
This list variable contains directories to search for command scripts or input files.

unixcom
When this boolean is set, WRspice will attempt to execute unrecognized commands as operating
system commands.

width
This variable sets the number of columns assumed in printed output, when output is being directed
to a file. This will also be used for standard output if for some reason WRspice cannot determine
the width of the terminal window (or has no terminal window). If not set, 80 columns will be
assumed.

4.9.3 Command-Specific Variables

These variables control the operation of specific WRspice commands and functions. Most of these
variables can be set indirectly from the Commands tool in the Tools menu of the Tool Control window.

appendwrite
When set, data written with the write command will be appended to the file, if the file already
exists. If not set, the file will be overwritten.

checkiterate
This sets the binary search depth used in finding operating range extrema in operating range
analysis initiated with the check command. It can be set to an integer value 0–10. If not set or
set to zero, the search is skipped.

diff abstol
This variable sets the absolute error tolerance used by the diff command. The default is 1e-12.

diff reltol
This variable sets the relative error tolerance used by the diff command. The default is 1e-3.

diff vntol
This variable sets the absolute voltage tolerance used by the diff command. The default is 1e-6.

260 CHAPTER 4. WRSPICE COMMANDS

dollarcmt
This boolean variable, when set, alters the interpretation of comments triggered by ‘$’ and ‘;’
characters, for compatibility with input files intended for other simulators.

In other simulators, the ‘$’ character always indicates the start of a comment. The ‘;’ (semicolon)
character is interpreted as equivalent to ‘$’ for purposes of comment identification. In WRspice,
‘$’ is used for shell variable substitution, a feature that does not appear in other simulators and
prevents general use of ‘$’ comments. This can cause trouble when reading files intended for other
simulators. WRspice will detect and strip “obvious” comments, where the ‘$’ is preceded with a
backslash or surrounded by white space, but this may not be sufficient.

Setting this variable will cause ‘$’ and ‘;’ to indicate the start of a comment when reading input,
if the character is preceded by start of line, white space, or a comma, independent of what follows
the character.

dpolydegree
This variable sets the polynomial degree used by the deriv function for differentiation. If not set,
the value is 2 (quadratic). The valid range is 0–7.

editor
This variable is set to the name or path of the text editor to be used within WRspice. This
overrides the SPICE EDITOR and EDITOR environment variables. If no editor is set, the internal
editor xeditor is used if graphics is available, otherwise the vi editor is used.

errorlog
If this variable is set to a file path, all error and warning messages will be copied to the file. The
variable can also be set as a boolean, in which case all errors and warnings will be copied to a file
named “wrspice.errors” in the current directory. When not set, errors that are not currently
displayed in the error window are lost. Only the last 200 messages are retained in the error window.

filetype
This variable can be set to either of the keywords ascii or binary. It determines whether ASCII
or binary format is used in the generated rawfiles. The default is ascii, but this can be overridden
with the environment variable SPICE ASCIIRAWFILE, which is set to “1” (for ASCII), or “0” (zero,
for binary).

fourgridsize
When a fourier command is given, the data are first interpolated onto a linear grid. The size of
the grid is given by this variable. If unspecified, a size of 200 is used.

helpinitxpos
This variable specifies the distance in pixels from the left edge of the screen to the left edge of the
help window, when it first appears. If not set, the value taken is 100 pixels.

helpinitypos
This variable specifies the distance in pixels from the top edge of the screen to the top edge of the
help window, when it first appears. If not set, the value taken is 100 pixels.

helppath
This variable specifies the search path used to locate directories containing help database files. This
variable takes its initial value from the SPICE HLP PATH environment variable, if set, otherwise it
assumes a built-in default “(/usr/local/share/xictools/wrspice/help)”, or, if XT PREFIX
is defined in the environment, its value replaces “/usr/local”.

installcmdfmt Setting this string allows modification of the installation command used in the wrupdate
command, for non-Windows releases only. If not set the effective value used is

4.9. VARIABLES 261

xterm -e sudo %s

As an example, a reasonable alternative might be

xterm -e su root -c \"%s\"

which would use su rather than sudo, and require the root password.

The characters “%s” are replaced with a script invocation command that actually performs the
installation. If this does not appear in the given string, this command will be added to the end,
following a space character.

The internal script invocation command calls /bin/sh to run the shell script upd install.sh

found in the startup directory of the installation location. The three arguments to this script are
the distribution file path, the distribution name token (such as “Linux2”), and the installation
location prefix (such as “/usr/local”). This script, too, can be customized or replaced.

The default strings pop-up a terminal (xterm) window, and ask for a password. The user, who
needs to know a bit about Unix shell programming, can modify this behavior by setting this
variable to a new string.

mplot cur
This variable contains the name of the last margin analysis output file generated. This variable
can be set, but has no effect, as the file names are generated internally.

nfreqs
This variable specifies how many multiples of the fundamental frequency to print in the fourier
command. If not set, 10 values are printed.

nocheckupdate
By default, when the program starts, the distribution repository will be queried via the internet,
and if a newer release is available, a message will appear that notifies the user. If this variable is
set in a startup file, this checking will be skipped.

noeditwin
If this boolean variable is set, no window is created for the text editor. This is desirable for editors
that create their own windows.

nopadding
If set, binary rawfiles with vectors of less than maximum length are not zero padded.

nopage
If set, page breaks are suppressed in the print and asciiplot commands. The nobreak variable is
similar, but suppresses page breaks only in the asciiplot command.

When given in the .options line, page ejects are suppressed in printed output, in batch mode.

noprintscale
When doing a print col, the value of the scale variable is usually printed in the first column of
each page. Setting this boolean variable suppresses this.

numdgt
This variable specifies the number of significant digits to print in print, asciiplot, fourier, and
some other commands. The default precision is six digits.

This variable sets the number of significant digits printed in output from batch mode, when used
in the .options line.

262 CHAPTER 4. WRSPICE COMMANDS

random
When set, the HSPICE-compatible random number functions (unif, aunif, gauss, agauss, limit)
will return random values. When not set and not running Monte Carlo analysis these functions
always return mean values.

This applies to the listed functions only, and not the ogauss or rnd functions, and not the volt-
age/current source random functions, which always produce random output.

This can be set with the set command or in a .options line to enable the random functions for use
in scripts, during analysis, or working from the command line. The random output is disabled by
default since some foundry model sets make use of random functions intended for HSPICE Monte
Carlo analysis, and this would cause big trouble in WRspice.

Warning: with this variable set, reading in foundry models such as those from IBM will gener-
ate random model parameters, as these models have built-in random generation compatible with
HSPICE and WRspice. This may be exactly what you want, but if not, be forewarned.

rawfile
This variable sets the default name for the data file to be produced. The default is as entered with
the -r command line option, or “rawspice.raw”. An extension sets the file format, which can be
the native rawfile format, or the Common Simulation Data Format (CSDF). See the description of
the write command (4.4.9) for more information about the formats and how they can be specified.
In server mode (the -s command line option was given) data will be output in rawfile format in
all cases.

rawfileprec
This variable sets the number of digits used to print data in an ASCII rawfile. The default is 15.

rhost
This variable specifies the name of the default machine to submit remote simulations to. This
machine must have a wrspiced daemon running. The default machine can also be specified in the
SPICE HOST environment variable, which will be overridden if rhost is set. Additional machines
can be added to an internal list with the rhost command. The host name can be optionally suffixed
with a colon followed by the port number to use to communicate with the wrspiced daemon. The
port must match that set up by the daemon. If not given, the port number is obtained from the
operating system for “wrspice/tcp” or 6114 (the IANA registered port number for this service)
if this is not defined.

rprogram
The name of the program to run when an rspice command is given. If not set, the program path
used will be determined as in the aspice command.

spectrace
This enables messages to be printed during Fourier analysis with the spec command, for debugging
purposes.

specwindow
This variable is set to one of the following strings, which will determine the type of windowing
used for the Fourier transform in the spec command. If not set, the default is hanning.

4.9. VARIABLES 263

bartlet Bartlet (triangle) window
blackman Blackman order 2 window
cosine Hanning (cosine) window
gaussian Gaussian window
hamming Hamming window
hanning Hanning (cosine) window
none No windowing
rectangular Rectangular window
triangle Bartlet (triangle) window

specwindoworder
This can be set to an integer in the range 2–8. This sets the order when the gaussian window is
used in the spec command. If not set, order 2 is used.

spicepath
This variable can be set to a path to a simulator executable which will be executed when asyn-
chronous jobs are submitted with the aspice command. If not set, the path used will default to
the value of the environment variable SPICE PATH. If this environment variable is not set, the
path is constructed from the value of the environment variable SPICE EXEC DIR prepended to the
name of the presently running program. If the SPICE EXEC DIR variable is not set, the path used
is that of the presently running WRspice.

units
If this variable is set to “degrees”, all trig functions will use degrees instead of radians for the
units of their arguments. The default is “radians”.

4.9.4 Plot Variables

These variables control the numerous plotting modes and capabilities of the plot, hardcopy, xgraph,
and asciiplot commands. Most of these variables can be set indirectly from the Plot Defs panel and
the Colors panel in the Tools menu of the Tool Control window.

colorN
If a variable with the name “colorN ” (N 1–19) is set to the name of a color the N ’th value used
in a window will have this color. The value of color0 denotes the background color and color1

denotes the grid and text color. The color names recognized are those found in the rgb.txt file
in the X-window system library. These mappings are built into WRspice and apply whether or
not X is being run. The colors can also be set using the panel brought up by the Colors button
in the Tools menu, and can be set through the X-resource mechanism (see 3.4) and the setrdb
command.

The “name” for a color can be given in HTML-style notation: #rrggbb, where rr, gg, bb are the
hex values for the red, green and blue component of the color.

combplot
This is a keyword of the plotstyle variable, or can be set as a boolean. It directs the use of a comb
plot (histogram) instead of connected points. Each point is connected to the bottom of the plot
area by a line.

curplot
This variable holds the name of the current plot. It can be set to another plot name (as listed in
the plots variable), which will become the current plot. This variable can also be set to “new”, in
which case a new, empty plot is created and becomes the current plot.

264 CHAPTER 4. WRSPICE COMMANDS

curplotdate
This read-only variable contains the creation date of the current plot.

curplotname
This read-only variable contains a description of the type of simulation which produced the current
plot. Note that this is not the name used by the setplot command, but rather a description of
the type of simulation done.

curplottitle
This read only variable contains the title of the circuit associated with the current plot.

gridsize
If this variable is set to an integer greater than zero and less than or equal to 10000, this number
will be used as the number of equally spaced points to use for the X-axis when plotting in the plot
command. The plot data will be interpolated to these linearly spaced points, and the use of this
variable makes sense only when the raw data are not equally spaced, as from transient analysis
with the steptype variable set to nousertp. Otherwise the current scale will be used (which may
not have equally spaced points). If the current scale isn’t strictly monotonic, then this option will
have no effect. The degree of the interpolation is given by the variable polydegree.

gridstyle
This variable is used to determine the style of grid used by the commands plot, hardcopy, and
asciiplot. It can be set to one of the following values:

lingrid Use a linear grid
loglog Use a log scales for both axes
xlog Use a log scale for the X axis
ylog Use a log scale for the Y axis
polar Use a polar grid
smith Transform data and use a Smith grid
smithgrid Use a Smith grid

group
This is a keyword of the scaletype variable, or can be set as a boolean. It indicates the use of
common scales for three categories of data: voltages, currents, and anything else. Each group will
have its own Y-scale.

hcopycommand
This variable specifies the operating system command which the hardcopy command will use
to send a job to the printer. If the string contains the characters “%s”, those characters will be
replaced by the name of the file being used to store the plot data, otherwise the file name will be
appended to the end of the string, separated by a space character. This allows reference to the file
in the middle of the string. For example, suppose that your site has some strange printer, but that
there is a filter which converts PostScript to a format recognized by that printer. The command
string might be “myfilt <%s |lpr -Pstrange printer”. Note that double quotes must be used
in the set command since the string contains space:

set hcopycommand = "myfilt <%s |lpr -Pstrange printer"

hcopydriver
This variable specifies the default driver to use in the hardcopy command. The variable should

be set to one of the following keywords:

4.9. VARIABLES 265

Keyword Description

hp laser pcl mono HP laser
hpgl line draw color color HPGL
postscript bitmap mono PostScript
postscript bitmap encoded mono PostScript, compressed
postscript bitmap color color PostScript
postscript bitmap color encoded color PostScript, compressed
postscript line draw mono PostScript, vector draw
postscript line draw color color PostScript
windows native Microsoft Windows native
image tiff, gif, jpeg, png, etc. images
xfig line draw color format for the xfig program

These drivers correspond to the drivers available in the format menu of the Print panel from the
plot windows.

For PostScript, the line draw drivers are most appropriate for SPICE plots. The bitmap formats
will work, but are less efficient for simple line drawings. More information on these drivers can be
found in 3.13.1.

If this variable is set to one of these formats, Print panels from new plot windows will have this
format set initially. Otherwise, the initial format will be the first item in the format menu, or the
last format selected from any plot window.

hcopyheight
This variable sets the default height of the image on the page, as measured in portrait orientation,
used by the hardcopy command. It is specified as a floating point number representing inches,
unless followed by “cm” (without space) which indicates centimeters. The default is typically 10.5
inches, but this is driver dependent.

hcopylandscape
This boolean variable, used by the hardcopy command, will cause plots to be printed in landscape
orientation when set.

hcopyresol
This variable sets the default resolution used by the driver to generate hardcopy data in the
hardcopy command. In almost all cases, the default resolution which is achieved by not setting
this variable is the best choice. One case where this may not be true is with the hp laser pcl

driver, where the choices are 75, 100, 150, and 300 (default 150).

hcopyrmdelay
When a plot or page is printed, a temporary file is produced in a system directory (/tmp by default),
and by default this file is not removed. There does not appear to be a portable way to know when
a print job is finished, or to know whether the print spooler requires the existence of the file to be
printed after the job is queued, thus the default action is to not perform any cleanup.

If this variable is set to an integer value larger than 0, it will specify that a temporary print file is
to be deleted this many minutes after creation.

The at command, available on all Unix/Linux/OS X platforms (but not Windows) is used to
schedule deletion, which will occur whether or not WRspice is still running. For this to work, the
user must have permission to use at. See “man at” for more information.

This variable can also be set from the hardcopy page in the Plot Defs tool from the Tools menu
of the Tool Control window, in Unix/Linux/OS X releases.

266 CHAPTER 4. WRSPICE COMMANDS

hcopywidth
This variable sets the default width of the image on the page, as measured in portrait orientation,
used by the hardcopy command. It is specified as a floating point number representing inches,
unless followed by “cm” (without space) which indicates centimeters. The default is typically 8.0
inches, but this is driver dependent.

hcopyxoff
This variable sets the distance of the image from the left edge of the page, viewed in portrait
orientation, used by the hardcopy command. It is specified as a floating point number represent-
ing inches, unless followed by “cm” (without space) which indicates centimeters. The default is
typically 0.25 inches, but this is driver dependent.

hcopyyoff
This variable sets the vertical position of the image on the page, viewed in portrait orientation, used
by the hardcopy command. Some drivers measure this distance from the top of the page, others
from the bottom. This is a consequence of the internal coordinate systems used by the drivers,
and the lack of assumption of a particular page size. The offset is specified as a floating point
number representing inches, unless followed by “cm” (without space) which indicates centimeters.
The default is typically 0.25 inches, but this is driver dependent.

lingrid
This is a keyword of the gridstyle variable, or can be set as a boolean. It specifies use of a linear
grid. This is the default grid type.

linplot
This is a keyword of the plotstyle variable, or can be set as a boolean. It specifies the display of
plot data as points connected by lines. This is the default.

loglog
This is a keyword of the gridstyle variable, or can be set as a boolean. It specifies use of a log-log
grid.

multi
This is a keyword of the scaletype variable, or can be set as a boolean. It indicates the use of
separate Y-scales for each trace of the plot (the default).

nobreak
If set, suppress page breaks when doing an asciiplot. The nopage variable is similar, but suppresses
page breaks in both the asciiplot and print commands.

noasciiplotvalue
If set, suppress printing the value of the first variable plotted with asciiplot on the left side of the
graph.

nogrid
Setting this boolean variable specifies plotting without use of a grid. The data will be plotted with
only the border lines at the bottom and left sides of the plotting area.

nointerp
This variable is used only by the asciiplot command. Normally asciiplot interpolates data onto a
linear scale before plotting it. If this option is given this won’t be done — each line will correspond
to one data point as generated by the simulation. Since data are already linearized unless from
a transient analysis with steptype set to nousertp, setting this variable will avoid a redundant
linearization.

4.9. VARIABLES 267

noplotlogo
When set, the WRspice logo is not shown in plots and hard-copies.

plotgeom
This variable sets the size of subsequently created plot windows. It can be set as a string "wid
hei" or as a list (wid hei). The wid and hei are the width and height in pixels.

For Microsoft Windows, the default (when plotgeom is unset) width and height are 500, 300 and
these apply to the whole window. Due to Microsoft’s silly and unnecessary conversion to “dialog
units”, the actual pixel size may be slightly different.

For others, the default width and height are 400, 300 and these apply to the plotting area only.

The acceptable numbers for the width and height are 100—2000. In the string form, a non-numeric
character can separate the two numbers, e.g., "300x400" is ok.

plotposnN
This variable can be used to set the screen position of the N ’th plot window. It can be specified
as a list, as

set plotposn0 = (100 200)

or as a string, as in

set plotposn2 = "150 250".

The N can range from 0–15. If not set, the plots are positioned by an internal algorithm.

plots
This list variable is read-only, and contains the names of the plots available. The curplot variable
can be set to any of these, or to the word “new”, in which case a new, empty plot is created.

plotstyle
This variable is used to determine the plot style in the commands plot, hardcopy, and asciiplot.
Its value may be one of:

linplot Connect points with line segments
combplot Connect each point to the X-axis
pointplot Plot each point as a discrete glyph

pointchars
If this variable is set as a boolean, alpha characters will be used as glyphs for point plots (i.e., the
pointplot mode is active) in a plot command. If set to a string, the characters in this string are
used to plot successive data values. The default is “oxabcdefhgijklmnpqrstuvwyz”.

pointplot
This is a keyword of the plotstyle variable, or can be set as a boolean. This will cause data to
be plotted as unconnected points. Each successive expression is plotted with a different glyph to
mark the points. The glyphs default to an internally generated set, however alpha characters can
be used if the variable pointchars is set.

polar
This is a keyword of the gridstyle variable, or can be set as a boolean. It specifies use of a polar
grid instead of a rectangular grid.

polydegree
This variable determines the degree of the polynomial that is fit to points when a plot is done.
If it is not set or set to 1, then the points are connected by lines. If it is greater than 1, then a

268 CHAPTER 4. WRSPICE COMMANDS

polynomial curve is fit to the points. If the value of polydegree is n, then for each n + 1 adjacent
points, an nth degree curve is fit. If this is not possible (due to the fact that the points aren’t
monotonic), the curve is rotated 90 degrees and another attempt is made. If is is still unsuccessful,
n is decreased by 1 and the process is repeated. Thus four points in the shape of a diamond may
be fit with quadratics to approximate a circle (although it’s not clear that this situation comes
up often in circuit simulation). The variable gridsize determines the size of the grid on which the
curve is fit if the data are monotonic. If the gridsize variable is zero or not set, or the scale is
non-monotonic, no polynomial fitting is done.

polysteps
This variable sets the number of intermediate points to plot between each actual point used for
interpolation. If not set, 10 points are used.

scaletype
This variable is used to determine the treatment of the Y-axis scaling used in displaying the curves
in the plot command. Its value may be one of:

multi Use separate Y-scales for each trace (the default)
single Use common Y-scale for all traces
group Use same scale for voltages, currents, and others

single
This is a keyword of the scaletype variable, or can be set as a boolean. It indicates the use of a
common Y-scale for all traces in the plot.

smith
This is a keyword of the gridstyle variable, or can be set as a boolean. It specifies use of a Smith
grid instead of a rectangular or polar grid, and an implicit transformation of the data into the
“reflection coefficient” space through the relation S = (z−1)/(z +1), where z is the complex input
data.

smithgrid
This is a keyword of the gridstyle variable, or can be set as a boolean. It specifies use of a Smith
grid instead of a rectangular or polar grid, and plots the data directly, without transformation.
The data must fall within the unit circle in the complex plane to be visible.

ticmarks
If this variable is set as a boolean, than an “x” will be printed every 10 points for each curve
plotted. This variable may also be set as a number, which will be the number of points between
each tic mark. If interpolation is used for plotting, the ticmarks feature is disabled.

title
This variable provides a string to use as the title printed in the plot. If not specified, the title is
taken as the name of the current plot.

xcompress
This variable can be set to an integer value. It specifies that we plot only one out of every value
points in each of the vectors.

xdelta
This value is used as the spacing between grid lines on the x-axis, if set.

xglinewidth
This variable specifies the line width in pixels to use in xgraph plots. If not set, a minimum line
width is used.

4.9. VARIABLES 269

xgmarkers
If set, xgraph point plots will use cross marks, otherwise big pixels are used.

xindices
This variable can be set as a list (lower upper) or as a string "lower upper", where lower and
upper are integers. Only data points with indices between lower and upper are plotted. The value
of upper must be greater or equal to lower.

xlabel
This variable provides a string to be used as the label for the x-axis. If not set, the name of the
scale vector is used.

xlimit
This variable can be set as a list (lower upper) or as a string "lower upper", where lower and
upper are reals. The plot area in the x-direction is restricted to lie between lower and upper. The
area actually used may be somewhat larger to provide nicely spaced grid lines, however.

xlog
This is a keyword of the gridstyle variable, or can be set as a boolean. It specifies use of a log scale
for the x-axis and a linear scale for the y-axis.

ydelta
This value is used as the spacing between grid lines on the y-axis, if set.

ylabel
This variable provides a string to be used as the label for the y-axis. If not set, no label is printed.

ylimit
This variable can be set as a list (lower upper) or as a string "lower upper", where lower and
upper are reals. Setting this variable will limit the plot area in the y-direction to lie between lower
and upper. It may be expanded slightly to allow for nicely spaced grid lines.

ylog
This is a keyword of the gridstyle variable, or can be set as a boolean. It specifies use of a log scale
for the y-axis and a linear scale for the x-axis.

ysep
If this boolean is set, the traces will be provided with their own portion of the vertical axis, so as
to not overlap. Otherwise, each trace may occupy the entire vertical range on the plot.

4.9.5 Simulation Option Variables

These variables control defaults related to simulation. Most of these variables can be set indirectly from
the Sim Defs tool in the Tools menu of the Tool Control window, which is equivalent to using the set
command. They (and any variable) can also be included in an .options line in the input file. Before
a simulation starts, the options from the .options line are merged with any that have been set using
the shell. The result of the merge is that options that are booleans will be set if set in either case, and
those that take values will assume the value set through the shell if conflicting definitions are given. The
merge will be suppressed if the shell variable noshellopts is set from the shell, in which case the only
options used will be those from the .options line, and those set using the set command will be ignored.

In the listing of variables provided by the set command without arguments, the variables set in the
.options line of the current circuit will be listed with a “+” in the first column. The variables set in the
.options line are available for substitution (into $variable references) when the circuit is the current

270 CHAPTER 4. WRSPICE COMMANDS

circuit, but otherwise do not affect the shell. For example, setting the variable noglob from a .options

line will not affect the global expansion of the shell, but references to $noglob would behave as if the
boolean noglob was set, while the circuit is the current circuit.

Shell variables set in the .options line are set before the rest of the SPICE text is expanded, so that
shell variable references in the text can be defined from the .options line, as in the .exec block. The
.exec lines are executed before the .options lines are expanded.

abstol
This variable sets the absolute error tolerance used in convergence testing. The default value is
1e-12.

bypass
When bypassing is enabled, which is the default, semiconductor devices will skip certain compu-
tations when terminal voltages are relatively static. This is a speed optimization. This variable
can be set as an integer to a value of 0 (zero) to disable bypassing. This can perhaps increase
accuracy, at the expense of speed. When set to a nonzero value, or to no value, there is no effect
as bypassing is enabled by default.

chgtol
This variable sets the minimum charge used when predicting the time step in transient analysis.
The default value is 1e-14.

dcmu
This option variable takes a value of 0.0–0.5, with the default being 0.5. It applies during operating
point analysis. When set to a value less than 0.5, the Newton iteration algorithm mixes in some
of the previous solution, which can improve convergence. The smaller the value, the larger the
mixing. This gives the user another parameter to twiddle when trying to achieve DC convergence.
This can be set from the Convergence page of the Sim Defs tool.

defad
This variable sets the default value for MOS drain diffusion area, and applies to all MOS device
models. The default is 0.0.

defas
This sets the default value for MOS source diffusion area, and applies to all MOS device models.
The default is 0.0.

defl
This sets the default value for MOS channel length, and applies to all MOS device models. The
default is model dependent, and is 100.0 microns for MOS levels 1–3 and 6, and typically 5.0
microns for other models.

defw
This variable sets the default value for MOS channel width, and applies to all MOS device models.
The default is model dependent, and is 100.0 microns for MOS levels 1–3 and 6, and typically 5.0
microns for other models.

dphimax
This variable sets the maximum allowable phase change of sinusoidal and exponential sources
between internal time points in transient analysis.

Consider a circuit consisting of a sinusoidal voltage source driving a resistor network. The internal
transient time steps are normally determined from a truncation error estimation from the numerical
integration of reactive elements. Since there are no such elements in this case, a large, fixed time

4.9. VARIABLES 271

step is used. This may not be sufficient to reasonably define the sinusoidal source waveform, so
the timestep is cut. This variable sets the time scale for the cut. The default value of π/5 provides
about 10 points per cycle. All of the built-in source functions that are exponential or sinusoidal
reference this variable in the timestep cutting algorithm.

This variable also limits the transient time step when Josephson junction devices are present, i.e.,
it is equivalent to the jjdphimax variable in Jspice3.

The variable can be set in the range π/1000 – pi, and is taken as π/5 if unset.

gmin
This sets the value of gmin, the minimum conductance allowed by the program. The default value
is 1e-12.

gminfirst
When this boolean option variable is set, during operating point analysis, gmin stepping is at-
tempted before source stepping. This is the default in Berkeley SPICE, however the WRspice

default is to apply source stepping first, which seems more effective.

gminsteps
This variable controls the gmin stepping used in operating point analysis (see 2.7.5). The values
are integers in the range -1 through 20, with the default being 0. If -1, no gmin stepping will
be attempted. If set to 0 (the default) the dynamic gmin stepping algorithm is used. This will
use variable-sized steps, reattempting with a smaller step after failure. If positive, the Berkeley
SPICE3 gmin stepping algorithm will be used, with a fixed number of steps as given.

interplev
In transient analysis, in the default steptype mode, internal timepoint data are interpolated onto
the external (user supplied) time points. Only the interpolated data are saved. This variable sets
the polynomial degree of interpolation, in the range 1–3. The default is 1 (linear interpolation).

itl1
The itl1 variable sets the dc iteration limit before convergence failure is indicated. The default is
400.

itl2
The itl2 variable sets the dc transfer curve iteration limit before convergence failure is indicated.
The default is 100.

itl2gmin
The itl2gmin variable sets the maximum number of iterations to allow per step during gmin stepping
when finding the dc operating point. The default is 20.

itl2src
The itl2src variable sets the maximum number of iterations to allow per step during dynamic source
stepping when finding the dc operating point. The default is 20.

itl4
This variable sets the number of timepoint iterations in transient analysis above which convergence
failure is indicated. The default is 10.

jjaccel
This applies only when Josephson junctions are present in the circuit, and performing transient
analysis. It causes a faster convergence testing and iteration control algorithm to be used, rather
than the standard more comprehensive algorithm suitable for all devices. If the circuit consists of
Josephson junctions, passive elements, and sources only, then setting this option may provide a
reduction in simulation time. It probably should not be used if semiconductor devices are present.

272 CHAPTER 4. WRSPICE COMMANDS

maxdata
This variable sets the maximum allowable memory stored as plot data during an analysis, in
kilobytes. The default is 256000. For all analyses except transient with the steptype variable set to
“nousertp”, the run will abort at the beginning if the memory would exceed the limit. Otherwise,
the run will end when the limit is reached.

maxord
This variable sets the maximum order of the integration method used. Setting this to 1 will always
use rectangular integration. If unset, the value taken is 2, which is the maximum order for the
default trapezoidal integration. If Gear integration is used, the maximum order is 6.

method
This string can be set to either of the keywords “trap”, which is the default and sets trapezoidal
integration, or “gear”, for Gear integration. The maxord variable sets the maximum order of the
integration.

minbreak
This sets the minimum interval between breakpoints in transient analysis, which is otherwise set
to 1e-20.

noadjoint
Most of the BSIM device models in WRspice have added code that builds an adjoint matrix which
is used to accurately compute device currents. The computed currents are not used in the device
models, but are available as simulation outputs. This has a small performance overhead which can
be eliminated by setting this boolean variable. The cost is that it may not be possible to obtain
device currents during the simulation, using the device[param] “pseudo-vector”.

noiter
Not currently implemented.

During transient analysis, at each new time step, Newton iterations are used to solve the nonlinear
circuit equations. The first iteration, the prediction step, uses extrapolation from past values to
obtain a best guess at the solution for use as input. Additional iterations use the previous output
values as input.

In cases where the nonlinearity is weak, or where the internal time step is forced to be small (as
when Josephson junctions are present) iterations beyond the predictor sometimes lead to unneeded
accuracy. Setting the variable noiter causes skipping of iterations beyond the prediction step, and
also skipping of certain other code. This maximizes the simulation rate, but can lead to errors if
not used carefully. Much the same effect can be obtained by setting reltol to a large value, however
noiter is more efficient as convergence testing and matrix loading are skipped, as there is a-priori
knowledge that no iterations are to take place. The iteration count and total internal timepoint
count are available from the rusage command.

nojjtp
During transient analysis with Josephson junctions present, the default time step is given by
T = φ/vmax, where φ = Φ0/2π (φ = 3.291086546e-16, Φ0 is the magnetic flux quantum) and
vmax = max(V j, sqrt(φJc/C)). If the variable nojjtp is set, the timestep is determined from a
truncation error calculation, as is the case when Josephson junctions are not present in the circuit.
The user should experiment to determine which timestep leads to faster execution.

noklu
When this boolean variable is set, KLU will not be used for sparse matrix calculations. Otherwise,
if the KLU plug-in is available, KLU will be used by default. The KLU plug-in is provided with
all WRspice distributions, and is installed in the startup directory.

4.9. VARIABLES 273

nomatsort
When using Sparse (i.e., KLU is unavailable or disabled), this boolean variable when set will
prevent using element sorting to improve speed. This corresponds to the legacy WRspice sparse
code. It may be interesting for comparison purposes, but setting this variable will slow simulation
of most circuits. This variable has no effect if KLU is being used.

noopiter
This boolean variable applies when one of gminsteps or srcsteps is given a positive value, and thus
operating point analysis (see 2.7.5) is using a Berkeley algorithm. In this case, by default a direct
iterative solution of the circuit matrix is attempted, and if this fails the stepping methods are
attempted. This initial direct solution attempt most often fails with complex circuits and can be
time consuming. Setting noopiter¿ will skip this initial attempt.

noshellopts
If set, do not use WRspice options that have been set interactively through the shell. Use only
options that appear in a .options line in the circuit file when running a simulation of the circuit.

notrapcheck
In some circuits, whose equations are “stiff” in a mathematical sense, trapezoidal integration may
not converge in transient analysis. These circuits likely have a low impedance (voltage source)
driving a capacitor, and/or a high impedance driving an inductor. Non-convergence can take
several forms:

1. The run exits with a “timestep too small” message.

2. The run exits with a math error such as overflow or underflow.

3. Circuit variables oscillate between values at every internal time point. The oscillations increase
in amplitude as simulation progresses.

4. Circuit variables monotonically diverge to huge values.

When using trapezoidal integration, there is a test to check for the oscillatory behavior charac-
teristic of this type of nonconvergence. If nonconvergence is detected, the present time point is
rejected, the time step is cut by a factor of eight, and the time point calculation is repeated using
backward Euler integration. The circuit will return to trapezoid integration in a few internal time
steps.

This is an improvement, but does not solve all convergence problems. In particular, this test
will not detect monotonic divergence, which could be detected by other means but too late to do
anything about it.

The new test may slow down transient analysis of some circuits. For circuits that are known to be
stable, the test can be avoided by setting the option variable notrapcheck.

oldlimit
When set, the SPICE2 limiting algorithm for MOS devices is used. Otherwise, an improved limiting
procedure is used.

parhier
By default, parameters from .param lines, subcircuit instantiation lines, and subcircuit defini-
tion lines have top-down precedence, meaning that when resolving parameter name clashes, the
definition at the highest level in the subcircuit hierarchy takes precedence. Thus, by default, pa-
rameters defined in .param lines outside of any subcircuit will override parameters of the same
name anywhere in the hierarchy.

274 CHAPTER 4. WRSPICE COMMANDS

The parhier option variable can be set to one of the keywords “global” or “local”. The “global”
setting retains default behavior. The “local” setting reverses the precedence to bottom-up. In
this case, parameter definitions at the lowest level within subcircuits will have precedence.

The parameter scoping rules are identical to HSPICE in release 3.2.15 and later. Earlier releases
had different scoping rules, with the default being closer but not identical to the “local” rule.

pivrel
This variable sets the relative ratio between the largest column entry and an acceptable pivot value.
The default value is 1e-3. In the numerical pivoting algorithm the allowed minimum pivot value
is determined by epsrel=max(pivrel*maxval,pivtol) where maxval is the maximum element in
the column where a pivot is sought (partial pivoting).

pivtol
This variable sets the absolute minimum value for a matrix entry to be accepted as a pivot. The
default value is 1e-13.

reltol
This sets the relative error tolerance used in convergence testing. The default value is 0.001 (0.1
percent).

renumber
When set, the source lines are renumbered sequentially after subcircuit expansion.

savecurrent
If this variable is set, then all device current special vectors are saved in the plot by default during
analysis. This enables plotting of device currents using the @device[param] construct.

spice3
By default, WRspice uses a custom algorithm for controlling integration order during transient
analysis. This algorithm provides the following advantages over the SPICE3 algorithm:

1. It provides a possibly better determination of when to use higher integration orders. This
is slightly different from the SPICE3 algorithm even for the order 2 that SPICE3 supports,
and probably takes a few more Euler time steps, but the WRspice code appears to be less
susceptible to trapezoid integration nonconvergence.

2. WRspice allows the full range of Gear integration orders, unlike SPICE3 which does not
advance integration order above 2, when maxord is larger than 2. It is not clear how useful
higher-order Gear integration is. Unlike Gear 2, which is much more stable in general than
trapezoidal integration for stiff systems, this is not true of the higher orders.

3. When the time step is reduced and integration order is cut due to non-convergence, backward-
Euler is now enforced for the next two time steps. In SPICE3, only the first time step is
forced to be backward-Euler. The new approach reduces the tendency of some circuits to not
converge when trapezoidal integration is used.

The standard SPICE3 logic can be used if desired, by setting the boolean option variable spice3.
WRspice releases prior to 3.2.13 used the SPICE3 algorithm exclusively.

srcsteps
This variable controls the source stepping used in operating point analysis (see 2.7.5). The values
are integers in the range -1 through 20, with the default being 0. If -1, no source stepping will
be attempted. If set to 0 (the default) the dynamic source stepping algorithm is used. This will
use variable-sized steps, reattempting with a smaller step after failure. If positive, the Berkeley
SPICE3 source stepping algorithm will be used, with a fixed number of steps as given.

4.9. VARIABLES 275

steptype
This string can be set to one of three keywords which determine the data output mode in transient
analysis. It can be set to “interpolate”, which is the default, “hitusertp”, or “nousertp”.

If not set, or set to “interpolate”, output points are interpolated from internal time points to
the user time increments, with degree 1 (the default) to 3, set by the interplev variable.

If set to “hitusertp”, then during transient analysis the time step will be cut so as to land on the
user time points. This requires more simulation time, but provides the greatest accuracy.

Setting to “nousertp” will cause internal timepoint data to be saved, either in internal data
structures in interactive mode or in the rawfile in batch mode. The amount of data can grow quite
large.

temp
This variable specifies the assumed operating temperature of the circuit under simulation. The
default value is 25C (298K).

tnom
The tnom variable sets the nominal temperature. The default value is 25C (298K). This is the
temperature at which device model parameters are assumed to have been measured.

trtol
This is a factor used during time step prediction in transient analysis. The default value is 7.0.
This parameter is an estimate of the factor by which WRspice overestimates the actual truncation
error. Larger values will cause WRspice to attempt larger time steps.

trapratio
This controls the “sensitivity” of the trapezoid integration convergence test, as described with
the notrapcheck variable. Higher values make the test less sensitive (and effective) but reduce the
number of false positives that can slow down simulation. The default value is 10.0.

trytocompact
This boolean variable is applicable only to the LTRA model. When specified, the simulator tries
to condense LTRA transmission line past history of input voltages and currents.

vntol
This variable sets the absolute voltage error tolerance used in convergence testing. The default
value is 1 microvolt.

xmu
This is the trapezoid/Euler mixing parameter that was provided in SPICE2, but not in SPICE3. It
effectively provides a mixture of trapezoidal and backward Euler integration, which can be useful
if trapezoid integration produces nonconvergence. It applies only when trapezoidal integration is
in use, and the maximum order is larger than 1. When xmu is 0.5 (the default), pure trapezoid
integration is used. If 0.0, pure backward-Euler (rectangular) integration is used, but the time
step predictor still uses the trapezoid formula, so this will not be the same as setting maxord to 1
(which also enforces backward-Euler integration). Trapezoidal integration convergence problems
can sometimes be solved by setting xmu to values below 0.5. Setting xmu below about 0.4 is not
recommended, better to use Gear integration.

4.9.6 Unused Option Variables

The following variables have no significance to WRspice, but were used in Berkeley SPICE2 and thus
may be present in input files. These are silently ignored by WRspice.

276 CHAPTER 4. WRSPICE COMMANDS

cptime
The SPICE2 option to set the maximum allowable cpu time for the job. This has no effect in
WRspice.

itl3
The SPICE2 option to set the lower transient iteration limit for timestep control. This is not used
in WRspice.

itl5
The SPICE2 option to set the maximum number of iterations for the job. This is not used in
WRspice.

limpts
The SPICE2 variable which sets the maximum number of points per analysis. This is not used in
WRspice.

limtim
The SPICE2 option to reserve time for output generation. This is not used in WRspice.

lvlcod
The SPICE2 option to generate machine code. This is not used in WRspice.

lvltim
The SPICE2 variable to set the type of timestep control. This is not used in WRspice.

nomod
The SPICE2 variable to suppress printing of a summary of models. This is not used in WRspice.

4.9.7 Batch Mode Option Variables

The following variables are mostly familiar from Berkeley SPICE2, and are used by WRspice when
running in batch mode. Generally, these would be included in a .options line in the SPICE input file.
They have no effect when running WRspice interactively.

acct
When WRspice is run in batch mode, print out resource usage information at the end of the run,
similar in format to the output of the rusage all command. This boolean variable has meaning
only when set in the input file in a .options line.

dev
This option variable is unique to WRspice. When given, a listing of all device instances and
parameters is printed in the batch output, in a format similar to the output of the “show -d *”
command. This boolean variable has meaning only when set in the input file in a .options line.

list
When WRspice is run in batch mode, print a circuit listing before running the simulation. This
boolean variable has meaning only when set in a .options line of the input file.

mod
This option variable is unique to WRspice. Logically, it is the inversion of the SPICE2 nomod

option, if given a listing of device models and parameters is added to batch output. The format
is similar to the output of the “show -m *” command. This boolean variable has meaning only
when set in a .options line of the input file.

4.9. VARIABLES 277

node
The SPICE2 variable to print a node summary. When given, a list of the node voltages and
branch currents after DC operating point analysis is printed. The values are printed whether or
not operating point analysis succeeds. This boolean variable has meaning only when set in the
.options line of the input file.

opts
When WRspice is run in batch mode, print out all the variables set and their values. This boolean
variable has meaning only when set in the .options line of the input file.

post
This option variable is similar to the post option of HSPICE. It must be set to one of the following
literal keywords.

post=csdf

In batch mode, if no rawfile (-r option) was specified on the WRspice command line, a CSDF
file will be produced for the batch run. The name of the file will be that of the input file
suffixed with “.csdf” if the input file name is known, or “unknown.csdf” if the input file
name can’t be determined.

post=raw

In batch mode, if no rawfile (-r option) was specified on the WRspice command line, a rawfile
will be produced for the batch run. The name of the file will be that of the input file suffixed
with “.raw” if the input file name is known, or “unknown.raw” if the input file name can’t
be determined.

4.9.8 Debugging Variables

These variables turn on debugging modes and otherwise provide debugging utility. Most of these variables
can be set indirectly from the Debug tool in the Tools menu of the Tool Control window.

debug
This variable may be a boolean (i.e., set to nothing), in which case all debugging is turned on, a
string token from the list below, in which case the string specifies which part of the program to
enable debugging for, or a list of these strings, which enables any combination. The possible values
are:

async The aspice and rspice code
control The control structure code
cshpar The C-shell pre-processor and parser
eval The expression evaluation routines
ginterface Graphics package interface routines
helpsys The help system
plot The plotting routines
parser The parser for expressions
siminterface The interface to the simulator
vecdb The vector database

display
This variable contains the display name for X used by the graphics system, generally of the form
host :number . This variable is read-only.

278 CHAPTER 4. WRSPICE COMMANDS

dontplot
This variable disables the plotting system for debugging purposes. When this variable is set, and
a plot command is given, no graphical operations are performed.

noparse
This variable turns off the parsing of circuit descriptions when a file is sourced with the source
command, for debugging purposes. The circuit cannot be simulated if it isn’t parsed.

nosubckt
This variable disables the expansion of subcircuits when set, for debugging purposes. A circuit
with subcircuits cannot be parsed if this is set.

program
This variable contains the full path name of the program.

trantrace
This can take integer values 0–2, a value 0 is the same as if unset. When set to 1 or 2, a message
is printed at every internal time point during transient analysis, providing information about the
predicted and used time step, integration order, convergence testing results, and breakpoints. The
value 2 is more verbose than 1.

Also, for values 1 and 2 equivalently, the operating point analysis is traced, with iteration counts,
step values and other information printed. This is done for any operating point analysis, for
transient analysis or not.

fpemode
The fpemode variable can be set to an integer which controls how the program responds to a
floating-point exception, such as divide by zero or overflow. The accepted values are

1. Exception signals are masked, exceptions are checked for periodically. An exception termi-
nates the simulation. This is the default.

2. Exception signals are masked, and exceptions are ignored.

3. Exception signals are unmasked. A warning is issued asynchronously on exceptions, but the
run will continue.

4. Exception signals are unmasked. An exception will asynchronously abort the run.

The unmasked signaling options are not available under Microsoft windows. The signaling options
are intended for debugging purposes, and are not recommended for general use.

Chapter 5

Margin Analysis

WRspice has provision for automated operating range and Monte Carlo analysis. Both types of anal-
ysis perform repeated simulation runs with varying parameters, and record whether or not the circuit
“worked” with that parameter set. Writing the code that tests whether the circuit is functioning prop-
erly or not is probably the major challenge in applying these analyses. It is usually helpful to have
a thorough understanding of how the circuit behaves before performing margin analysis. The margin
analysis is one of the later steps in circuit design.

Both types of margin analysis can use a file format which contains the SPICE deck plus executable
statements. There are actually two formats recognized, one for compatibility with the JSPICE3 program,
and a new format particular to WRspice. Use of one of these formats is the most straightforward method
of initiating margin analysis, however there are short-cuts and hooks for more advanced users. The
scripting capability is a powerful tool, and in general allows much tedium to be automated.

5.1 Operating Range Analysis

In operating range analysis, a suitably configured source file containing a circuit description is evaluated
over a two dimensional area of parameter space, producing an output file describing a true/false result
at each evaluated point. The algorithm and implementation are designed to be as efficient as possible
to speed execution. Results can be viewed graphically during or after simulation.

As with conventional circuit and command files, operating range analysis files can be sourced by
simply typing in the file name. If the file name happens to conflict with a WRspice command, then the
file can be input with the source command by typing

source filename

In batch mode, the operating range analysis is performed immediately. Otherwise, actual operating
range analysis is performed with the check command (see 4.5.5). In batch mode, the check command
is run automatically, if the file has certain properties to be described.

In order to initiate margin analysis with the check command, the current circuit must be from a
margin analysis file, or have appropriate bound codeblocks. Every circuit suitable for margin analysis
must have a control block which contains a shell routine which will evaluate the circuit variables and
establish whether or not the operation is correct. If operation is incorrect, a vector named “checkFAIL”

279

280 CHAPTER 5. MARGIN ANALYSIS

must be set to a non-zero value. These control statements can be supplied in the circuit file in a block
initiated with a .control line and ending with a .endc line, or through another file added as a codeblock
and bound to the “controls” of the circuit, through use of the codeblock command.

A second block of statements, the “header” or “exec” block, is typically required, though it is not
an error if none is provided. This block provides initializing statements, and is executed at the start
of operating range analysis, or at the start of each trial in Monte Carlo analysis. This block can be
provided in the circuit file within an .exec and an .endc line, or can be a bound codeblock, bound to
the “execs” of the circuit.

Monte Carlo analysis files differ from operating range files only in the header or .exec lines (or header
codeblock). During Monte Carlo analysis, the header block is executed before every simulation so that
variables can be updated. In operating range analysis variables are initialized by the header block only
once, at the start of analysis.

If the circuit has a line with the characters .monte, then Monte Carlo analysis is assumed, and the
-m option to the check command is unnecessary. Similarly, a .checkall line will imply the checking
of all points in operating range analysis, making the -a option to the check command unnecessary. A
line containing the characters .check will indicate (the default) operating range analysis. One of these
lines must appear if the file is to be analyzed in batch mode. These lines also suppress the automatic
execution of the .exec lines and the .control lines as the file is sourced (the .exec lines are actually
executed, but no vectors are saved, to enable correct shell variable expansion). A line containing the
string .noexec appearing in the circuit file will have the same effect.

There are a number of vectors with defined names which control operating range and Monte Carlo
analysis. In addition, there are relevant shell variables. The vectors created for use in an analysis run
are assigned to a plot structure created for the analysis. This plot becomes the current plot after the
analysis starts. These vectors are usually set in the header (.exec) block, unless the defaults are used.
They can also be set by hand, or under the control of another script, if the current plot is the constants
plot, before starting the analysis. The pre-named vectors are as follows:

checkPNTS (real, length >= 1)
These are the points of the scale variable (e.g., time in transient analysis) at which the pass/fail

test is applied. If a fail is encountered, the simulation is stopped and the next trial started. If not
specified, the pass/fail test is applied after the trial is finished. The checkPNTS vector is usually
set in the header to a list of values with the compose command.

checkVAL1 (real, length 1)
This is the initial central value of the first parameter to be varied during operating range analysis.
It is not used in Monte Carlo analysis.

checkDEL1 (real, length 1)
The first central value will be incremented or decremented by this value between trials in operating
range analysis. It is not used in Monte Carlo analysis.

checkSTP1 (integer, length 1)
This is the number of trials above and below the central value. In Monte Carlo analysis, it partially
specifies the number of simulation runs to perform, and specifies the X-axis of the visual array
used to monitor progress (with the mplot command). In operating range analysis, the default is
zero. In Monte Carlo analysis, the default is 3.

checkVAL2 checkDEL2 checkSTP2
These are as above, but relate to the second parameter to be varied in the circuit in operating range

analysis. In Monte Carlo analysis, only checkSTP2 is used, in a manner analogous to checkSTP1.

5.1. OPERATING RANGE ANALYSIS 281

The total number of simulations in Monte Carlo analysis is (2*checkSTP1 + 1)*(2*checkSTP2

+ 1), the same as would be checked in operating range analysis. The checkSTP2 variable sets the
number of cells in the Y-axis of the plot produced by mplot.

checkFAIL (integer, length 1, 0 or nonzero)
This is the global pass/fail flag, which is set after each trial, nonzero indicates failure. This

variable is used in both operating range and Monte Carlo analysis. This variable is set by the code
which evaluates the pass/fail criteria.

opmin1, opmax1 (real, length >= 1)
The operating range analysis can be directed to find the operating range extrema of the first

parameter for each value of the second parameter. These vectors contain the values found, and are
automatically generated if the range finding feature is enabled. They are not generated in Monte
Carlo analysis.

opmin2, opmax2 (real, length >= 1)
The operating range analysis can be directed to find the operating range extrema of the second

parameter for each value of the first parameter. These vectors contain the values found, and are
automatically generated if the range finding feature is enabled. They are not generated in Monte
Carlo analysis.

range, r scale (real, length >= 1)
If the range finder was active, these vectors are automatically created and added to the plot. The
range vector and its scale r scale contain all of the extrema data, formatted in such a way that the
path is the contour of the boundary of the pass region. The plot command can be used to display
this contour by entering “plot range”.

value (real, length variable)
This vector can be used to pass trial values to the circuit, otherwise shell variables are used. This
pertains to operating range and Monte Carlo analysis. The name of this vector can be redefined
by setting a shell variable named “value” to a new name.

checkN1, checkN2 (integer, length 1)
These are the indices into the value array of the two parameters being varied in operating range

analysis. The other entries are fixed. These vectors are not used if shell variables pass the trial
values to the circuit, and are not used in Monte Carlo analysis.

The name of these vectors can be redefined by setting a shell variable of the same name (“checkN1”
or “checkN2”). The value of this variable, if a non-numeric string token, is taken as the name of a
vector containing the index. If the variable is set to a positive integer, that integer will be taken
as the index, and no vector is used.

The shell variables are:

checkiterate (integer 0-10)
This sets the binary search depth used in finding operating range extrema. If not set or set to zero,
the search is skipped. The binary search is used to find the exact values of the operating region
boundary, and has no relevance to the usual set of pass/fail outputs generated with the check
command. If nonzero, during operating range analysis and not in all-points mode, the extrema for
each row and column are found, and saved in the opmin1, opmax1, opmin2, and opmax2 vectors,
which are then used to generate the range and r scale vectors described above.

If both the the input vectors checkSTP1 and checkSTP2 are unset or set to zero, the range finder
behaves somewhat differently. In this case, if the all-points mode is active, and the file is using an

282 CHAPTER 5. MARGIN ANALYSIS

input “value” vector rather than shell variables for alterable parameters, then the range of each
of these parameters is determined. A masking facility allows some of these inputs to be skipped.
If the all-points mode is not set, the range for the two variables is found. The range finder is
described in more detail below. The range finder is not used in Monte Carlo analysis, and the
checkiterate variable is ignored in that case.

value1, value2
The value1 and value2 variables are set to the current trial values to be used in the circuit

(parameters 1 and 2). The SPICE deck should reference these variables (as $value1 and $value2)
as the parameters to vary. Alternatively, the vector value array can be used for this purpose. These
variables can be used in Monte Carlo analysis, but are not set implicitly.

If any of the shell variables value1, value2, or a shell variable named “value” are set to a string,
then the shell variable or vector named in the string will have the same function as the assigned-to
variable. For example, if in the header one has set value1 = C1, then the variable reference $C1 would
be used in the file to introduce variations, rather than $value1. Similarly, if we have issued set value =

myvec, the vector myvec would contain values to vary (using the pointer vectors checkN1 and checkN2),
and a reference would have the form $&myvec[$&checkN1]. Note that the alternate variables are not
automatically defined before the circuit is parsed, so that they should be set to some value in the header.
The default $value1 and $value2 are predefined to zero.

The “checkN1” and “checkN2” names can also be set as a shell variable, the value of which if a
positive integer will supply the index, or if a string token will redefine the name of the vector which
provides the index.

The checkVAL1, checkDEL1, etc. vectors to be used must be defined and properly initialized, either
in the deck or directly from the shell, before analysis.

The operating range analysis sets the shell variables value1 and value2 to the variables being varied. In
addition, vector variables can be set. This is needed for scripts such as optimization where the parameter
to be varied is required to be under program control. If a vector called value is defined, and a vector
called checkN1 is defined, and checkN1 >= 0 and checkN1 < the length of value, then value[checkN1]

is set to $value1. Similarly, if a vector called value is defined, and a vector called checkN2 is defined, and
checkN2 >= 0 and checkN2 < the length of value, then value[checkN2] is set to $value2. Thus, instead
of invoking $value1 and $value2 in the SPICE text, one can instead invoke $&value[$&checkN1],

$&value[$&checkN2], where we have previously defined the vectors value, checkN1, checkN2. Thus,
the file could have a number of parameters set to $&value[0], $&value[1], If checkN1 is
set to 2, for example, $&value[2] would be varied as parameter 1. The unreferenced values would
be fixed at predefined entries. As mentioned above, the “value1”, “value2”, “value”, “checkN1”, and
“chackN2” names can be redefined by assigning the name of a new variable to the shell variable name
being reassigned, using the set command.

There are a number of ways to introduce the trial variations into the circuit. Of these, we have
explicitly identified shell variable and vector substitution. Below is a review of these methods.

1. Perhaps the most direct method is to include the forms $value1 and $value2 (if two dimensional)
for substitution in the current circuit. The variables will be replaced by the appropriate numerical
values before each trial, as for shell variable substitution.

2. If a variable named “value1” is set to a string token with the set command, then a variable of
the same name as the string token will hold the trial values, instead of value1. The same applies
to value2. Thus, for example, if the circuit contains expansion forms of the variables foo1 and
foo2 (i.e., $foo1 and $foo2), one could perform an analysis using these variables by giving

5.1. OPERATING RANGE ANALYSIS 283

set value1 = foo1 value2 = foo2

3. The method above allows the SPICE options to be set. These are the built-in keywords, which
can be set with the set command or in a .options line in an input file, which control or provide
parameters to the simulation.

The most important example is temperature, using the temp option. To include temperaure as
one of the parameters to vary, one could provide, for example

set value1=temp

4. If there are existing vectors named “checkN1” and (if two dimensions) “checkN2” that contain
integer values, and the variable named “value” is set to the name of an existing vector (or a
vector named “value” exists), then the vector components indexed by checkN1 and checkN2 will
hold trial values, if within the size of the vector. For example:

let vec[10] = 0

let checkN1 = 5 checkN2 = 6

set value = vec

The first line creates a vector named “vec” of size sufficient to contain the indices. The iterated
values will be placed in vec[5] and vec[6]. The circuit should reference these values, either
through shell substitution (e.g., $&vec[5]) or directly as vectors.

Alternatively, a variable named “checkN1” can be set. If the value of this variable is an integer,
that integer will be used as the index. If the variable is a name token, then the index will be
supplied by a vector of the given name. The same applies to checkN2. The following example
illustrates these alternatives:

let vec[10] = 0

set checkN1 = 5

let foo = 6

set checkN2 = foo

5. Given that it is possible to set a vector as if a variable, by using the set command with the syntax

set &vector = value

it is possible to place trial values into vectors during analysis. The form above is equivalent to

let vector = value

Note, however, that the ‘&’ character has special significance to the WRspice shell, so when this
form if given on the command line the ampersand should be quoted, e.g., by preceding it with a
backslash.

Thus, suppose that the circuit depends on a vector named delta. One can set up trial substitution
using this vector as

set value1 = ’&delta’

6. The construct above can be extended to “special” vectors, which enable device and model param-
eters to be set ahead of the next analysis. These special vectors have the form

@devname[param]

284 CHAPTER 5. MARGIN ANALYSIS

where devname is the name of a device or model in the circuit, and param is one of the parameter
keywords for the device or model. These keywords can be listed with the show command.

For example, if the circuit contains a MOS device m1 one might have

set value1 = ’&@m1[w]’

This will perform the analysis while setting the m1 w (device width) parameter as parameter 1.

The range is constructed by row, where columns represent different values for value1. A second pass
fills in concave contours in column order, thus the same pattern should be obtained independently of
the parameter ordering. Patterns with islands or reentrancy may not be displayed correctly. The only
way to make the algorithm completely foolproof is to check every point, which is achieved by giving the
-a option to the check command, or by using .checkall.

During the analysis, a binary search can be employed to determine the actual values of the edges
of the operating region. This feature is enabled by setting the shell variable checkiterate to some value
between 1 and 10. This is the depth of the binary search used to find the endpoint. A binary search
will be performed during conventional operating range analysis only, and is skipped (other than in the
exception noted below) if in all-points mode (-a flag or .checkall line given). The search is skipped
if there are no pass points in the row or column. The computed values are stored in the opmin1, etc.
vectors, where the zeroth element corresponds to the lowest value of the fixed parameter. For example,
opmin1[0] is the minimum value of parameter 1 when parameter 2 is value2 - steps2*delta2. Entries of
these vectors corresponding to points that were not found are zero.

The value to set for the checkiterate variable is a trade-off between accuracy and execution time. If
the boundary is found within the parameter range defined by the input vectors (and as plotted with
the mplot command), the error is bounded by delta/2n, where delta is the appropriate checkDEL1 or
checkDEL2 value, and n is the checkiterate value. If the extremum is found outside of the given parameter
space, the error may be val/2n, where val is the value at the edge of the parameter space nearest the
solution.

After an operating range analysis with range finding is complete, two new vectors, range and r scale,
are created from the opmin1, etc. vectors and added to the current plot. These vectors incorporate all
of the nonzero entries in such a way that they form a path describing the boundary of the operating
region, with range containing Y-data and r scale containing X-data. This contour can be displayed by
plotting the range vector with the plot command.

The algorithm used the evaluate a row is shown below. This is the normal algorithm; if the -a flag is
given to the check command, or a .checkall line was found in the file, the points are simply stepped
through, and no binary searching is done.

for each value2 value {
start at left
value1 = central1 - delta1 * nsteps1
loop {

analyze
record point
if (pass) break
value1 = value1 + delta1
if (value1 > central1 + delta1 * nsteps1) break

}
if (pass)

do binary search for lower extremum

5.2. OPERATING RANGE ANALYSIS FILE FORMAT 285

start at right
value1 = central1 + delta1 * nsteps1
loop {

analyze
record point
if (pass) break
value1 = value1 - delta1
if (value1 < central1 - delta1 * nsteps1) break

}
if (pass)

do binary search for upper extremum
}

If both checkSTP1 and checkSTP2 are zero or not defined, the range finder can have an additional
operating mode. This mode is made active if the all-points mode is active (-a option or .checkall

given), and a vector is being used to supply trial values, rather than shell variables. If a vector named
“value” is defined, or a vector defined whose name is assigned to the shell variable named “value”, the
range of each of the components can be computed. Note that the vector can have arbitrarily many
entries, and each of these ranges can be found. The range finding can be skipped for certain entries by
defining a mask vector. This is a vector with the same length as the value vector, and the same name as
the value vector but suffixed with “ mask” as in value mask. Each non-zero entry in the mask signifies
that the corresponding variable in the value array will not be tested for range. Additionally, any entry in
the value vector which is zero will not be tested. If no mask vector is defined, the range will be computed
for all nonzero entries. The results are placed, somewhat arbitrarily, in the opmin1 and opmax1 vectors,
which will have lengths equal to that of the value vector. Skipped entries will be zero. No range vector
will be produced, since it is not relevant in this mode.

If not in all-points mode, the range will be computed for the shell variables. The opmin1, etc. will
contain the maximum and minimum values (length 1). The range vector will contain the four points
found. Note that the central value must be a pass point in either of these modes, or the range finding is
skipped. There is no output file produced when both checkSTP1 and checkSTP2 are zero or undefined.

One can keep track of the progress of the analysis in two ways. WRspice will print the analysis point
on the screen, plus indicate whether the circuit failed or passed at the point, if the -v option is given
to the check command. Shell echo commands can be used in the executable blocks to provide more
information on screen, and echoed output is printed whether or not -v is given. The second method uses
the mplot command, which graphically records the pass/fail points. If “mplot -on” is given before the
analysis, the results are plotted as simulation proceeds.

During operating range analysis, a file named basename.dxx is created in the current directory, where
basename is the base name of the input file, and xx is 00–99, set automatically to avoid clobbering existing
files. The output file name is stored in the mplot cur shell variable.

There is a special echof command that allows text to be printed in the output file. The echof
command is used exactly as the echo command. If there is no output file open, the command returns
with no action. The echof command can be used in either .control or .exec blocks in the input file.

5.2 Operating Range Analysis File Format

There are two recognized file formats which can be used as input for operating range analysis. One, the
“old format”, is retained for compatibility with an older version of SPICE. WRspice recognizes a second

286 CHAPTER 5. MARGIN ANALYSIS

“new format” which is more consistent with standard WRspice input file organization. In both cases,
the input file which specifies operating range analysis consists of three sections:

1. an initializing header

2. a body of control statements

3. the circuit description

5.2.1 Initializing Header

In the old format, the file must begin with a line containing only the string

.check

which is followed by shell commands. The header block in the old format is terminated with a line
containing only the string

.control

which also begins the control statement block.

In the new format, the first line of the file is taken to be a title line and is otherwise ignored, consistent
with other types of input files for WRspice. The header statements are found within a block which starts
with a line containing only the string

.exec

and ends with a line containing only the string

.endc

in other words, a standard .exec block. The comment prefix *@ can also be used to enter header block
text, as in described in 2.10.1. The new format file for margin analysis should also contain a line with
only the string

.check

somewhere in the text. Unlike the old format, the ordering of the .exec block and the .check line is
unimportant.

The lines in the header block initialize internally defined variables. The variables are those listed
above as user-set, including the checkiterate shell variable. Variables which are not used (such as those
for variable 2 in a one dimensional case) can be ignored.

An example header is given below:

Old format:
.check

5.2. OPERATING RANGE ANALYSIS FILE FORMAT 287

compose checkPNTS values 50p 100p 150p 200p

checkVAL1 = 12

checkDEL1 = .5

checkSTP1 = 5

checkVAL2 = .5

checkDEL2 = .1

checkSTP2 = 2

New format:
* Title for this file

.check

.exec

compose checkPNTS values 50p 100p 150p 200p

checkVAL1 = 12

checkDEL1 = .5

checkSTP1 = 5

checkVAL2 = .5

checkDEL2 = .1

checkSTP2 = 2

.endc

The variables checkFAIL, checkSTP1, and checkSTP2 are integers. The other variables are real, except
for checkPNTS which is a real vector.

The header block can also be supplied as a bound codeblock. This is accomplished, for example,
with the command

codeblock -abe filename

where filename is the name of a file which contains the statements to be used in the header block. If an
.exec codeblock is bound to the circuit, the bound block is executed rather than any locally specified
header block.

5.2.2 Control Statements

The control statement block is almost identical in the old and new formats. In the old format, the control
block immediately follows the header block, though in the new format this is not necessary. The control
statements are evaluated at each of the checkPNTS, and set the checkFAIL flag if the logic determines
that the circuit run has failed.

This control block begins with a line containing only the string

.control

and ends with a line containing only

.endc

i.e., the standard form for a WRspice control block (see 2.10.1).

288 CHAPTER 5. MARGIN ANALYSIS

The enclosed lines are WRspice script statements that perform a logical comparison of circuit variables
and set the checkFAIL variable accordingly.

The control block can also be supplied as a bound codeblock. This is accomplished, for example,
with the command

codeblock -ab filename

where filename is the name of a file which contains the statements to be used in the control block. If a
.control codeblock is bound to the circuit, the bound block is executed rather than any locally specified
control block.

5.2.3 Circuit Description

In the old format, the circuit description starts immediately after the end of the control block, with the
title line. In the new format, the title line is the first line of the file, and the circuit description is by
definition what is left after removing the .exec and .control blocks.

This circuit description section of the file consists of conventional WRspice format circuit description
lines. The parameters to be varied are replaced with $value1 and $value2. Alternatively, one can
define a vector called value, and unit length vectors checkN1 and checkN2. Then, the parameters to
be varied can be replaced with $&value[$&checkN1] and $&value[$&checkN2]. During analysis, the
$value1 and $value2 (and the value vector entries, if used) are replaced with the current values of the
variables.

Note that in the circuit description, it is often useful to use the concatenation character % to add a
suffix. For examples, the file line might be

v1 0 1 pulse (0 5m 10p ...)

where we want to vary the “5m”. If the value of $value1 is 5, one could replace this line with

v1 0 1 pulse (0 $value1%m 10p ...)

Without the %, the variable substitution would fail. Alternatively, one could set $value1 to 5e-3,
and not use the “m” suffix in the file.

The concatenation character can be set to a different character with the var catchar variable. If this
variable is set to a string consisting of a single punctuation character, then that character becomes the
concatenation character.

5.3 Example Operating Range Analysis Control File

The listing that follows is an operating range analysis control file for a Josephson binary counter circuit.

3 stage Josephson counter, operating range analysis

.check

.exec

Margins of a Josephson binary counter

5.3. EXAMPLE OPERATING RANGE ANALYSIS CONTROL FILE 289

This is an example of an operating range analysis input file

#

After sourcing the file, optionally enter "mplot -on" to see results

graphically, then "check" to initiate run. The results will be left

in a file.

#

compose checkPNTS values 50p 135p 185p 235p 285p 335p 385p 435p 485p

checkFAIL = 0

above two lines are required in header, the rest are optional

#

central value of first variable, number of evaluation steps above and

below, step delta:

checkVAL1 = 13

checkSTP1 = 5

checkDEL1 = .5

#

same thing for second variable

checkVAL2 = 38

checkSTP2 = 5

checkDEL2 = 1

#

one can define other initialized constants here as well

failthres = 1

#

end of header

.endc

.control

#

The following code is evaluated just after the time variable exceeds

each one of the checkPNTS

#

if time > checkPNTS[0]

if time < checkPNTS[1]

time is 50p, set quiescent phase differences. Uninitialized variables

do not require declaration in header

p0 = v(200) - v(201)

p1 = v(300) - v(301)

p2 = v(400) - v(401)

checkFAIL = 0

echo "tp1" to screen

echo tp1

end

end

if time > checkPNTS[1]

if time < checkPNTS[2]

time = 135p, state should be ’001’. if not set checkFAIL to 1

pi and the other variables in the ’constants’ plot are known

if abs(v(200) - v(201) + p0 - 2*pi) > failthres

checkFAIL = 1;

end

if abs(v(300) - v(301) - p1) > failthres

290 CHAPTER 5. MARGIN ANALYSIS

checkFAIL = 1;

end

if abs(v(400) - v(401) - p2) > failthres

checkFAIL = 1;

end

echo tp2

end

end

if time > checkPNTS[2]

if time < checkPNTS[3]

time = 185p, state should be ’010’. if not set checkFAIL to 1

if abs(v(200) - v(201) - p0) > failthres

checkFAIL = 1;

end

if abs(v(300) - v(301) + p1 - 2*pi) > failthres

checkFAIL = 1;

end

if abs(v(400) - v(401) - p2) > failthres

checkFAIL = 1;

end

echo tp3

end

end

if time > checkPNTS[3]

if time < checkPNTS[4]

time = 235p, state should be ’011’. if not set checkFAIL to 1

if abs(v(200) - v(201) + p0 - 2*pi) > failthres

checkFAIL = 1;

end

if abs(v(300) - v(301) + p1 - 2*pi) > failthres

checkFAIL = 1;

end

if abs(v(400) - v(401) - p2) > failthres

checkFAIL = 1;

end

echo tp4

end

end

if time > checkPNTS[4]

if time < checkPNTS[5]

time = 285p, state should be ’100’. if not set checkFAIL to 1

if abs(v(200) - v(201) - p0) > failthres

checkFAIL = 1;

end

if abs(v(300) - v(301) - p1) > failthres

checkFAIL = 1;

end

if abs(v(400) - v(401) + p2 - 2*pi) > failthres

checkFAIL = 1;

end

echo tp5

5.3. EXAMPLE OPERATING RANGE ANALYSIS CONTROL FILE 291

end

end

if time > checkPNTS[5]

if time < checkPNTS[6]

time = 335p, state should be ’101’. if not set checkFAIL to 1

if abs(v(200) - v(201) + p0 - 2*pi) > failthres

checkFAIL = 1;

end

if abs(v(300) - v(301) - p1) > failthres

checkFAIL = 1;

end

if abs(v(400) - v(401) + p2 - 2*pi) > failthres

checkFAIL = 1;

end

echo tp6

end

end

if time > checkPNTS[6]

if time < checkPNTS[7]

time = 385p, state should be ’110’. if not set checkFAIL to 1

if abs(v(200) - v(201) - p0) > failthres

checkFAIL = 1;

end

if abs(v(300) - v(301) + p1 - 2*pi) > failthres

checkFAIL = 1;

end

if abs(v(400) - v(401) + p2 - 2*pi) > failthres

checkFAIL = 1;

end

echo tp7

end

end

if time > checkPNTS[7]

if time < checkPNTS[8]

time = 435p, state should be ’111’. if not set checkFAIL to 1

if abs(v(200) - v(201) + p0 - 2*pi) > failthres

checkFAIL = 1;

end

if abs(v(300) - v(301) + p1 - 2*pi) > failthres

checkFAIL = 1;

end

if abs(v(400) - v(401) + p2 - 2*pi) > failthres

checkFAIL = 1;

end

end

end

#

end of pass/fail logic

.endc

.tran 1p 500p uic

.subckt count 1 4 5 6 7

292 CHAPTER 5. MARGIN ANALYSIS

c1 4 0 3.2p

r1 3 8 .4

r2 4 9 1.1

b1 3 0 6 jj1

b2 5 0 7 jj1

l1 3 4 2.0p

l2 4 5 2.0p

l3 1 2 2.0p

l4 2 0 2.0p

l5 8 0 1.4p

l6 9 0 .1p

k1 l1 l3 .99

k2 l2 l4 .99

.ends count

r1 17 2 50

r2 1 6 50

r3 1 10 50

r4 1 14 50

r5 3 18 50

r6 7 13 50

r7 11 13 50

r8 15 13 50

r9 3 20 50

r10 4 5 .43

r11 8 9 .43

r12 12 19 .43

r13 16 30 .5

l1 5 6 2.1p

l2 9 10 2.1p

l3 19 14 2.1p

l4 30 0 2p

x1 3 2 4 100 101 count

x2 7 6 8 200 201 count

x3 11 10 12 300 301 count

x4 15 14 16 400 401 count

*

* These are the sources which vary

* In general, the $value1 or $value2 symbols can replace any numerical

* parameter in the circuit description. No checking is done as to whether

* the substitution makes sense.

*

*flux bias

v1 13 0 pulse(0 $value1%m 10p 10p)

*gate bias

v2 1 0 pulse(0 $value2%m 10p 10p)

*

*

v3 20 0 pwl(0 0 70p 0

+ 75p 15m 90p 15m 100p -15m 115p -15m

+ 125p 15m 140p 15m 150p -15m 165p -15m

+ 175p 15m 190p 15m 200p -15m 215p -15m

5.4. MONTE CARLO ANALYSIS 293

+ 225p 15m 240p 15m 250p -15m 265p -15m

+ 275p 15m 290p 15m 300p -15m 315p -15m

+ 325p 15m 340p 15m 350p -15m 365p -15m

+ 375p 15m 390p 15m 400p -15m 415p -15m

+ 425p 15m 440p 15m 450p -15m 465p -15m 500p -15m)

*

* flux bias first stage

v4 18 0 pulse(0 13m 10p 10p)

*gate bias first stage

v5 17 0 pulse(0 39m 8p 10p)

*

*Nb 3000 A/cm2 area = 20 square microns

.model jj1 jj(rtype=1,cct=1,icon=10m,vg=2.8m,delv=0.08m,

+ icrit=0.6m,r0=49.999998,rn=2.745098,cap=0.777093p)

.end

5.4 Monte Carlo Analysis

WRspice has a built-in facility for performing Monte Carlo analysis, where one or more circuit variables
are set according to a random distribution, and the circuit analyzed for functionality. The file formats
and operation are very similar to operating range analysis.

As in operating range analysis, a complete input file consists of three sections: a header, an exe-
cutable script analyzing operation, and the circuit deck. Unlike operating range analysis, however, the
header block is executed before every simulation run, so that circuit variables may be changed (not
just initialized) in the header. As in operating range analysis, an “old format” and a “new format” are
recognized. These formats are identical in Monte Carlo analysis, except that instead of a line containing
the string .check, Monte Carlo files contain the keyword .monte. This must be the first line of the file
in the old format, but can appear anywhere in a new format file. If both keywords appear in the file
(not a good idea), then Monte Carlo analysis is assumed.

As with conventional circuit and command files, Monte Carlo analysis files can be sourced by simply
typing in the file name. If the file name happens to conflict with a command, then the file can be input
with the source command. If not in batch mode, the analysis is initiated with the check command,
otherwise the analysis is performed immediately.

Monte Carlo analysis is enforced by supplying the -m option to the check command, which initiates
analysis. The -m option is only necessary if the input file does not contain a .monte line. If the -r option
is given, the simulations will be parceled out to remote servers, allowing parallelism in computation.

Output from a Monte Carlo run is saved in a file with base name that of the circuit, with a suffix
“.mxx”, where xx is a sequentially assigned number so as to make the file name unique. The output file
name is stored in the mplot cur shell variable.

The number of runs performed in Monte Carlo analysis is set by the checkSTP1 and checkSTP2 vari-
ables, as in operating range analysis. The number of points will be (2*checkSTP1 + 1)*(2*checkSTP2

+ 1). If the values are not given, they default to 3 (49 points).

In Monte Carlo analysis, the header block is executed before each simulation. In the header block,
shell variables and vectors may be set for each new trial. These variables and vectors can be used in the
SPICE text to modify circuit parameters. The names of the variables used, and whether to use vectors
or variables, is up to the user (variables are a little more efficient). Monte Carlo analysis does not use

294 CHAPTER 5. MARGIN ANALYSIS

predefined names for parameter data. Typically, the gauss function is used to specify a random value
for the variables in the header block.

It is possible to use .param defines to introduce random values in Monte Carlo analysis, as well as
shell variables and vectors. Parameters defined in .param lines are recomputed at the start of each trial,
before the .exec block is evaluated. Random values can be set by calling the random number generation
functions (unif, aunif, gauss, agauss, limit).

Parameters are visible in the .exec block if the .exec block is defined in the same file as the circuit
(directly or through an .include). Parameters are not visible in the .control block. Parameters are
not visible in bound codeblocks.

There is a special echof command that allows text to be printed in the output file. This is the
means by which the trial values are recorded, as there is no default recording mechanism. The file by
default records only the success or failure of each run. The echof command is used exactly as the echo
command. If there is no output file open, the command returns with no action. The echof command
can be used in either .control or .exec blocks in the input file.

Monte Carlo results can be viewed during analysis ar afterward with the mplot command. Giving
“mplot -on” will display results while simulating, as in operating range analysis. The display consists
of (2*checkSTP1 + 1) * (2*checkSTP2 + 1) squares, as in operating range analysis, with each square
indicating pass or fail. In Monte Carlo analysis, the squares are simply filled in in sequence, and their
placement has nothing to do with the actual circuit values.

5.5 Example Monte Carlo Analysis Control File

The following is an example new format Monte Carlo input file:

3 stage counter

.exec

Monte Carlo analysis of a Josephson binary counter

This is an example of a Monte Carlo analysis input file

#

compose checkPNTS values 50p 135p 185p 235p 285p 335p 385p 435p 485p

#

set value1 = $&(13*gauss(.2,1))

set value2 = $&(38*gauss(.2,1))

put the values in the output file

echof $value1 $value2

#

one can define other initialized constants here as well

failthres = 1

#

end of header

.endc

.control

#

The following code is evaluated just after the time variable exceeds

each one of the checkPNTS

#

echo $&time

5.5. EXAMPLE MONTE CARLO ANALYSIS CONTROL FILE 295

if time > checkPNTS[0]

if time < checkPNTS[1]

time is 50p, set quiescent phase differences. Uninitialized variables

do not require declaration in header

p0 = v(200) - v(201)

p1 = v(300) - v(301)

p2 = v(400) - v(401)

checkFAIL = 0

echo Test values: $value1 $value2

else

echo -n " Checking at time $&time ... "

end

end

if time > checkPNTS[1]

if time < checkPNTS[2]

time = 135p, state should be ’001’. if not set checkFAIL to 1

pi and the other variables in the ’constants’ plot are known

if abs(v(200) - v(201) + p0 - 2*pi) > failthres

checkFAIL = 1;

end

if abs(v(300) - v(301) - p1) > failthres

checkFAIL = 1;

end

if abs(v(400) - v(401) - p2) > failthres

checkFAIL = 1;

end

end

end

if time > checkPNTS[2]

if time < checkPNTS[3]

time = 185p, state should be ’010’. if not set checkFAIL to 1

if abs(v(200) - v(201) - p0) > failthres

checkFAIL = 1;

end

if abs(v(300) - v(301) + p1 - 2*pi) > failthres

checkFAIL = 1;

end

if abs(v(400) - v(401) - p2) > failthres

checkFAIL = 1;

end

end

end

if time > checkPNTS[3]

if time < checkPNTS[4]

time = 235p, state should be ’011’. if not set checkFAIL to 1

if abs(v(200) - v(201) + p0 - 2*pi) > failthres

checkFAIL = 1;

end

if abs(v(300) - v(301) + p1 - 2*pi) > failthres

checkFAIL = 1;

end

296 CHAPTER 5. MARGIN ANALYSIS

if abs(v(400) - v(401) - p2) > failthres

checkFAIL = 1;

end

end

end

if time > checkPNTS[4]

if time < checkPNTS[5]

time = 285p, state should be ’100’. if not set checkFAIL to 1

if abs(v(200) - v(201) - p0) > failthres

checkFAIL = 1;

end

if abs(v(300) - v(301) - p1) > failthres

checkFAIL = 1;

end

if abs(v(400) - v(401) + p2 - 2*pi) > failthres

checkFAIL = 1;

end

end

end

if time > checkPNTS[5]

if time < checkPNTS[6]

time = 335p, state should be ’101’. if not set checkFAIL to 1

if abs(v(200) - v(201) + p0 - 2*pi) > failthres

checkFAIL = 1;

end

if abs(v(300) - v(301) - p1) > failthres

checkFAIL = 1;

end

if abs(v(400) - v(401) + p2 - 2*pi) > failthres

checkFAIL = 1;

end

end

end

if time > checkPNTS[6]

if time < checkPNTS[7]

time = 385p, state should be ’110’. if not set checkFAIL to 1

if abs(v(200) - v(201) - p0) > failthres

checkFAIL = 1;

end

if abs(v(300) - v(301) + p1 - 2*pi) > failthres

checkFAIL = 1;

end

if abs(v(400) - v(401) + p2 - 2*pi) > failthres

checkFAIL = 1;

end

end

end

if time > checkPNTS[7]

if time < checkPNTS[8]

time = 435p, state should be ’111’. if not set checkFAIL to 1

if abs(v(200) - v(201) + p0 - 2*pi) > failthres

5.5. EXAMPLE MONTE CARLO ANALYSIS CONTROL FILE 297

checkFAIL = 1;

end

if abs(v(300) - v(301) + p1 - 2*pi) > failthres

checkFAIL = 1;

end

if abs(v(400) - v(401) + p2 - 2*pi) > failthres

checkFAIL = 1;

end

end

if time > checkPNTS[1]

if checkFAIL <> 0

echo FAILED

else

echo OK

end

end

#

end of pass/fail logic

.endc

.tran 1p 500p uic

.subckt count 1 4 5 6 7

c1 4 0 3.2p

r1 3 8 .4

r2 4 9 1.1

b1 3 0 6 jj1

b2 5 0 7 jj1

l1 3 4 2.0p

l2 4 5 2.0p

l3 1 2 2.0p

l4 2 0 2.0p

l5 8 0 1.4p

l6 9 0 .1p

k1 l1 l3 .99

k2 l2 l4 .99

.ends count

r1 17 2 50

r2 1 6 50

r3 1 10 50

r4 1 14 50

r5 3 18 50

r6 7 13 50

r7 11 13 50

r8 15 13 50

r9 3 20 50

r10 4 5 .43

r11 8 9 .43

r12 12 19 .43

r13 16 30 .5

l1 5 6 2.1p

l2 9 10 2.1p

l3 19 14 2.1p

298 CHAPTER 5. MARGIN ANALYSIS

l4 30 0 2p

x1 3 2 4 100 101 count

x2 7 6 8 200 201 count

x3 11 10 12 300 301 count

x4 15 14 16 400 401 count

*

* These are the sources which vary

* In general, the $value1 or $value2 symbols can replace any

* numerical parameter in the circuit description. No checking

* is done as to whether the substitution makes sense.

*

*flux bias

v1 13 0 pulse(0 $value1%m 10p 10p)

*gate bias

v2 1 0 pulse(0 $value2%m 10p 10p)

*

*

v3 20 0 pwl(0 0 70p 0

+ 75p 15m 90p 15m 100p -15m 115p -15m

+ 125p 15m 140p 15m 150p -15m 165p -15m

+ 175p 15m 190p 15m 200p -15m 215p -15m

+ 225p 15m 240p 15m 250p -15m 265p -15m

+ 275p 15m 290p 15m 300p -15m 315p -15m

+ 325p 15m 340p 15m 350p -15m 365p -15m

+ 375p 15m 390p 15m 400p -15m 415p -15m

+ 425p 15m 440p 15m 450p -15m 465p -15m 500p -15m)

*

* flux bias first stage

v4 18 0 pulse(0 13m 10p 10p)

*gate bias first stage

v5 17 0 pulse(0 39m 8p 10p)

*

*Nb 3000 A/cm2 area = 20 square microns

.model jj1 jj(rtype=1,cct=1,icon=10m,vg=2.8m,delv=0.08m,

+ icrit=0.6m,r0=49.999998,rn=2.745098,cap=0.777093p)

.end

5.6 Circuit Margin Optimization

There are three scripts which implement a margin optimization algorithm used by Clark Hamilton at
NIST. These files (kept in the scripts directory) are optimize, margins, and merit. The main script is
optimize, which is invoked with the name of the file to be optimized as an argument.

This facility is for advanced users. The present status of the scripts is unknown, and it is possible
that they may require modification before use. They are provided as an example of how the WRspice

scripting facility can be employed for optimization.

An example input file, which defines and initializes various variables and vectors as well as providing
a circuit to optimize, is shown below. To perform optimization, one gives “optimize filename”.

5.6. CIRCUIT MARGIN OPTIMIZATION 299

.check

set checkiterate = 3

let checkN1 = 0

compose checkPNTS values 1n 2n

let value[19] = 0

let flags[19] = 0

let flags[0] = 1

let value[0] = .8

.control

if (TIME >= checkPNTS[0])

 checkFAIL = 0

 if ((abs(v(1)) > 1.5) or (abs(v(1)) < .5))

 checkFAIL = 1

 endif

endif

.endc

optimization test

i1 0 1 pulse(0 1 0 1n)

r1 1 0 $&value[0]

.tran .01n 1.1n

.end

This is the simplest way to input the file, alternatively one could set the shell variables and vectors
externally and/or use a bound codeblock for pass/fail evaluation.

The margins script, called by optimize calls the check command. The variable checkiterate must
be set to a nonzero value up to 10. This is the binary search depth for finding the operating range.

The vectors checkN1 and value must be defined, checkN1 is the index into the value array of the
variable being adjusted. It is altered by the scripts, but it and value must be defined before the script is
input or in the header as shown.

The vector checkPNTS is the array of points where analysis is performed. Note that due to some
strangeness, at least two entries must exist.

The value array is initialized to the starting values. The flags vector contains 1 for each entry in the
array which is to be varied, the others are treated as constants.

The lengths of the vectors value and flags is 20, which is assumed in the optimization script.

After the analysis is complete, the value array will contain the optimized values. Two other arrays,
lower and upper, are created, and contain the lower and upper limit for each value index.

The scripts provided can be customized by the user for more specific applications, or used as templates
for different types of analysis. It is recommended that such scripts be defined as codeblocks to speed
execution.

300 CHAPTER 5. MARGIN ANALYSIS

This page intentionally left blank.

Appendix A

File Formats

A.1 Rawfile Format

Rawfiles produced and read by WRspice have either an ASCII or a binary format. ASCII format is the
preferred format for general use, as it is hardware independent and easy to modify, though the binary
format is the most economical in terms of space and speed of access.

The ASCII format consists of lines or sets of lines introduced by a keyword. The Title and Date lines
should be the first in the file and should occur only once. There may be any number of plots in the file,
each one beginning with the Plotname, Flags, No. Variables, No. Points, Variables, and Values

lines. The Command and Option lines are optional and may occur anywhere between the Plotname and
Values lines. Note that after the Variables keyword there must be numvars “declarations” of outputs,
and after the Values keyword, there must be numpoints lines, each consisting of numvars values. To
clarify this discussion, one should create an ASCII rawfile with WRspice and examine it.

Line Name Description

Title An arbitrary string describing the circuit
Date A free-format date string
Plotname A string describing the analysis type
Flags Either “complex” or “real”
No. Variables The number of variables (numvars)
No. Points The number of points (numpoints)
Command An arbitrary WRspice command
Option WRspice variables
Variables A number of variable lines (see below)
Values A number of data lines (see below)

Any text on a Command line is executed when the file is loaded as if it were typed as a command. By
default, WRspice puts a version command into every rawfile it creates.

Text on an Option line is parsed as if it were the arguments to a WRspice set command. The
variables set are then available normally, except that they are read-only and are associated with the
plot.

A Variable line looks like

301

302 APPENDIX A. FILE FORMATS

number name typename [parm=value]

The number field is ignored by WRspice. The name is the name by which this quantity will be referenced
in WRspice. The typename may be either a pre-defined type from the table below, or one defined with
the deftype command.

Name Description SPICE2 Numeric Code

notype Dimensionless value 0
time Time 1
frequency Frequency 2
voltage Voltage 3
current Current 4
output-noise SPICE2 .noise result 5
input-noise SPICE2 .noise result 6
HD2 SPICE2 .disto result 7
HD3 SPICE2 .disto result 8
DIM2 SPICE2 .disto result 9
SIM2 SPICE2 .disto result 10
DIM3 SPICE2 .disto result 11
pole SPICE3 pz result 12
zero SPICE3 pz result 13

The (optional) parm keywords and values follow. The known parameter names are listed in the table
below.

Name Description

min Minimum significant value for this output
max Maximum significant value for this output
color The name of a color to use for this value
scale The name of another output to use as the scale
grid The type of grid to use – numeric codes are:

0 Linear grid
1 Log-log grid
2 X-log/Y-linear grid
3 X-linear/Y-log grid
4 Polar grid
5 Smith grid

plot The plotting style to use – numeric codes are:
0 Connected points
1 “Comb” style
2 Unconnected points

dims The dimensions of this vector – not fully supported

If the flags value is complex, the points look like r ,i where r and i are exponential floating point
format. Otherwise they are real values in exponential format. Only one of real and complex should
appear.

The lines are guaranteed to be less than 80 columns wide, unless the plot title or variable names are
very long, or a large number of variable options are given.

A.2. HELP DATABASE FILES 303

The binary format is similar to the ASCII format in organization, except that it is not text-mode.
Strings are NULL terminated instead of newline terminated, and the values are in the machine’s double
precision floating point format instead of in ASCII. This makes it much easier to read and write and
reduces file size, but the binary format is not portable between machines with different floating point
formats.

The circuit title, date, and analysis type name in that order are at the start of the plot, each
terminated by a NULL byte. Then the flags field (a short, which is 1 for real data and 2 for complex
data), the number of outputs, and the number of points (both integers) are present. Following this
is a list of NULL-terminated strings which are command lines. This list is terminated by an extra
NULL byte. Then come the options, which consist of the name, followed by the type and the value in
binary. The output “declarations” consist of the name, type code, flags, color, grid type, plot type, and
dimension information in that order. Next come the values, which are either doubles or pairs of doubles
in the case of complex data.

The “old” binary format, which is used by SPICE2, is not accepted by WRspice, however the format
is given below should it be necessary to write a translator.

SPICE2 Binary Rawfile Format
Field Size in Bytes

title 80
date 8
time 8
numoutputs 2
the integer 4 2
output names 8 for each output
types of output 2 for each output
node index 2 for each output
plot title 24
data numpoints * numoutputs * 8

The data are in the form of double precision numbers, or pairs of single precision numbers if the data
are complex.

The values recognized for the “types of output” fields are listed in the data types (top) table above
as the “SPICE2 Numeric Code”.

A.2 Help Database Files

The help information is obtained from database files suffixed with .hlp found along the help search path.
These directories may also contain other files referenced in the help text, such as image files. The help
search path can be set in the environment with the variable SPICE HLP DIR, and/or may be set with
the helppath variable, which will override the environment. These files have a simple format, allowing
users to create and modify them. Each help entry is associated with one or more keywords, which should
be unique in the database. The help system has a debugging mode, which can usually be switched on
by the application, which will issue a warning message on stderr if a name clash is detected. The files
are ASCII text, either in DOS or Unix format. Fields are separated by keywords which begin with “!!”.
Although the help system provides rich-text presentation from HTML formatting, entries can be in plain
text. A sample plain-text entry has the form:

304 APPENDIX A. FILE FORMATS

!!KEYWORD

excmd

!!TITLE

Example Command

!!TEXT

This command exists only in this example. Note that the

!!keywords only have effect if they start in the first

column. The blank line below is optional.

!!SUBTOPICS

akeyword

anotherkeyword

!!SEEALSO

yetanotherkeyword

In this example, the keyword “excmd” is used to access the topic, and should be unique among the
database entries accessed by the application. The text which appears in the topic (following !!TEXT) is
shown indented, which is recommended for clarity, but is not required.

In “.hlp” files, lines anywhere with ‘*’ or ‘#’ in the first column are ignored, as they are assumed
to be comments. Blank lines outside of the !!TEXT field are ignored. Leading white space is stripped,
which can be a problem for maintaining indentation in formatted plain text. To add a space which will
not be stripped, use the HTML escape “ ”.

The following ‘!!’ keywords can appear in “.hlp” files. These are recognized only in upper case,
and must start in the first text column.

!!(space) anything
A line beginning with two exclamation points followed by a space character is ignored.

!!KEYWORD keyword-list
This keyword signals the start of a new topic. The keyword-list consists of one or more tokens, each
of which must be unique among all topics in the database. The words are used to identify the topic,
and if more than one is listed, the additional words are equivalent aliases. The keyword-list may
follow !!KEYWORD on the same line, or may be listed in the following line, in which case !!KEYWORD
should appear alone on the line.

Punctuation is allowed in keywords, only white space characters can not be used. The ‘#’ character
has special meaning and should not be part of a keyword name. Also, character sequences that
could be confused with a URL or directory path should be avoided. The latter basically prohibits
the ‘/’ character (and also ‘\’ under Windows) from being included in keywords. There are special
names starting with ‘$’ which are expanded to application-specific internal variables, as described
below. To avoid any possibility of a clash, it is probably best to avoid ‘$’ in general keywords.

It is often useful to include a meaningful prefix in keywords to ensure uniqueness, for example in
Xic, all commands have keywords prefixed with “xic:”.

!!TITLE string
The !!TITLE specifies the title of the topic, and should follow the !!KEYWORD specification. The
title text can appear on the same line following !!TITLE, or on the next line, in which case !!TITLE
should appear alone in the line. The title is printed at the top of the topic display, and is used in
menus of topics.

!!TEXT

This line signals the beginning of the topic text, which is expected to be plain text. The keyword is

A.2. HELP DATABASE FILES 305

mutually exclusive with the !!HTML keyword. The lines following !!TEXT up to the next !!KEYWORD,
!!SEEALSO, or !!SUBTOPICS line or end of file are read into the display window. The plain text is
converted to HTML before being sent to the display in the following manner:

1. The title text is enclosed in <H1>...</H1>.

2. Each line of text has a
 appended.

3. The subtopics and see-alsos are preceded with added <H3>Subtopics</H3> and
<H3>References</H3> lines.

4. The subtopics and see-alsos are converted to links of the form title
where the keyword is the database keyword, and the title is the title text for the entry.

Note that the text area can contain HTML tags for various things, such as images. Also note
that text formatting is taken from the help file (the
 breaks lines), and not reformatted at
display time. The !!HTML line should be used rather than !!TEXT if the text requires full HTML
formatting.

!!HTML

This line signals the beginning of the topic text, which is expected to be HTML-formatted. The
keyword is mutually exclusive with the !!TEXT keyword. The parser understands all of the standard
HTML 3.2 syntax, and a few 4.0 extensions. References are to keywords found in the database
and general URLs. Image (.gif, etc.) files can be referenced, and are expected to be found along
with the .hlp files.

!!IFDEF word
This line can appear in the block of text following !!TEXT or !!HTML. In conjunction with the
!!ELSE and !!ENDIF directives, it allows for the conditional inclusion of blocks of text in the topic.
The word is one of the special words defined by the application. Presently, the following words are
defined:

in Xic Xic

in WRspice WRspice

in either, under Windows Windows

If word is defined, the text up to the next !!ELSE or !!ENDIF will be included in the topic, and
any text following an !!ELSE up to !!ENDIF is discarded. If word is not defined, the text up to the
next !!ELSE or !!ENDIF is discarded, and any text following an !!ELSE is included. The constructs
can be nested. A word that is not recognized or absent is “not defined”. Every !!IFDEF should
have a corresponding !!ENDIF. The !!ELSE is optional. The !!SEEALSO and !!SUBTOPICS lines
can appear within the blocks.

Example:

!!HTML

Here is some text.

!!IFDEF Xic

You are reading this in Xic.

!!ELSE

!!IFDEF WRspice

You are reading this in WRspice.

!!ELSE

You are not reading this in Xic or WRspice.

!!ENDIF

!!ENDIF

306 APPENDIX A. FILE FORMATS

!!IFNDEF word
This keyword can appear in the block of text following !!TEXT or !!HTML. It is similar to !!IFDEF

but has the reverse logic.

!!ELSE

This keyword can follow !!IFDEF or !!IFNDEF and defines the start of a block of text to include
in the topic if the condition is not satisfied.

!!ENDIF

This keyword terminates the text blocks to be conditionally included in the topic, using !!IFDEF

or !!IFNDEF.

!!INCLUDE filename
The keyword may appear in the text following !!TEXT or !!HTML. When encountered in the text
to be included in the topic, the text of filename, which is searched for in the help search path if not
an absolute pathname, is added to the displayed text of the current topic. There is no modification
of the text from filename.

If the filename is a relative path to a subdirectory of one of the directories of a directory in the
help search path, the subdirectory is added to the search list. Thus, an HTML document and
associated gif files can be placed in a separate subdirectory in the help tree. The HTML document
can be referenced from the main help files with a !!INCLUDE directive, and there is no need to
explicitly change the help search path.

!!REDIRECT keyword target
This will define keyword as an alias for target. The target can be any input token recognizable by
the help system, including URLs, named anchors, and local files. For example:

!!REDIRECT nyt http://www.nytimes.com

Giving “!help nyt” in Xic or “help nyt” in WRspice will bring up a help window containing the
New York Times web page.

!!HEADER

The text that follows, up until the next !!KEYWORD or !!FOOTER, is saved for inclusion in each page
composed from the !!HTML lines for database keywords. The header is inserted at the top of the
page. There can be only one header defined, and if more than one are found in the help files, the
first one read will be used.

In the header text, the literal token %TITLE% is replaced with the !!TITLE text of the current topic
when displayed.

!!FOOTER

The text that follows, up until the next !!KEYWORD or !!HEADER, is saved for inclusion in each page
composed from the !!HTML lines for database keywords. The footer is inserted at the bottom of
the page. There can be only one footer defined, and if more than one are found in the help files,
the first one read will be used.

!!SEEALSO keyword-list

The keyword-list consists of a list of keywords that are expected to be defined by !!KEYWORD lines
elsewhere in the database. A menu of these items is displayed at the bottom of the topic text, under
the heading “References”. The keywords specified after !!SEEALSO can appear on the same line
separated with space, or on multiple lines. If a keyword in these lists is not found in the database,
the normal action is to ignore the error. The application may provide a debugging mode, whereby
unresolved references will produce a warning message.

A.2. HELP DATABASE FILES 307

!!SUBTOPICS keyword-list
This produces a menu of the topics found in the keyword-list very similar to !!SEEALSO, however
under the heading “Subtopics”. This can be used in addition to !!SEEALSO.

A.2.1 Anchor Text

Clickable references in the HTML text have the usual form:

highlighted text

Here, “something” can be a help database keyword or an ordinary URL.

One can use named anchors in help keywords. This means that the ‘#’ symbol is holy, and should
not be used in help keywords. The named anchors can appear in the !!HTML part of the help database
entries in the usual HTML way, e.g.

!!KEYWORD

somekeyword

...

!!HTML

...

some text

Then, referencing forms like “!help somekeyword#refname” and blather will bring up the “somekeyword” topic, but with “some
text” at the top of the help window, rather than the start of the document.

There is an additional capability: ‘$’ expansion. If the first character of an anchor URL is ‘$’, it
is processed specially. The leading word is replaced with other text, either an internal path, or an
environment variable. The internally recognized tokens are:

$HELP replaced by first component of the help path
$EXAMPLES replaced by path to examples
$DOCS replaced by path to docs
$SCRIPTS replaced by path to scripts

Otherwise, if it matches a variable in the environment, it is replaced by the environment variable
value. If no match, it is left alone.

The paths are derived from the first component of the Help path. If the HelpPath variable is
“/usr/local/share/xictools/xic/help /blather/help”, then the substitution paths are
/usr/local/share/xictools/xic/examples”, etc.

If the first character of an anchor URL is ‘˜’, the path is tilde expanded. This is done after ‘$’
substitution. Tildes denote a user’s home directory: “~/mydir” might expand to “/users/you/mydir”,
and “~joe/joesdir” might expand to “/users/joe/joesdir”, etc.

In WRspice, one can source files from anchor text in the HTML viewer, if the anchor text consists of
a file name with a “.cir” extension. Thus, if one has a circuit file named “mycircuit.cir”, and the
HTML text in the help window contains a reference like

308 APPENDIX A. FILE FORMATS

click here

then clicking on the “click here” tag will source mycircuit.cir into WRspice. Similarly, anchor references
to files with a “.raw” extension will be loaded into WRspice (as a rawfile, i.e., a plot data file) when the
anchor is clicked.

A.2.2 .mozyrc File

The help system looks for a file named “.mozyrc” in the user’s home directory, which contains keywords
which define the default behavior of many of the commands and features of the help window. This is
used only in UNIX/Linux releases. It is necessary to install this file if one wants alternate selections
from the help window, for example different fonts, to be persistent.

A sample .mozyrc file listing is provided below. The file can be found in the startup directory in
the installation tree, under the name “mozyrc”. To install, edit the file if necessary, then move it to your
home directory under the name “.mozyrc”.

This is the startup file which sets defaults for the mozy web browser

and the Xic/WRspice HTML viewer. It should be installed as ".mozyrc"

in the user’s home directory, should the user wish to change the

defaults.

--- DISPLAY ATTRIBUTES ---

Background color used for pages that don’t have a <body> tag,

such as help text (default #e8e8f0)

DefaultBgColor #e8e8f0

Background image URL to use for pages that don’t have a <body> tag

(no default)

#DefaultBgImage /some/dir/pretty_picture.jpg

Text color to use for pages that don’t have a <body> tag

(default black)

DefaultFgText black

Color to use for links in pages without a <body> tag

(default blue)

DefaultFgLink blue

How to handle images:

0 Don’t display images that require downloading

1 Download images when encountered in document

2 Download images after document is displayed

3 Display images progressively after document is displayed (the default)

ImageLoadMode 3

How to underline anchors when underlining is enabled

0 No underline

A.2. HELP DATABASE FILES 309

1 Single solid underline (default)

2 Double solid underline

3 Single dashed underline

4 Double dashed underline

AnchorUnderline 1

If this is set to one (the default) anchors are shown as buttons. If set

to zero, anchors use the underlining style

AnchorButtons 0

If set to one (the default) anchors will be highlighted when the pointer

passes over them. If zero, there will be no highlighting

AnchorHighlight 1

The default font families. This is the XLFD family name with "-size"

appended. Defaults: adobe-times-normal-p-14 misc-fixed-normal-c-14

FontFamily adobe-times-normal-p-14

FixedFontFamily misc-fixed-normal-*-14

If set to one, animations are frozen. If zero (the default) animations

will be shown normally

FreezeAnimations 0

--- COMMUNICATIONS ---

Time in seconds allowed for a response from a message (0 for no timeout,

to 600, default 15)

Timeout 15

Number of times to retry a message after a timeout (0 to 10, default 4)

Retries 4

The port number used for HTTP communications (1 to 65536, default 80)

HTTP_Port 80

The port number used for FTP communications (1 to 65536, default 21)

FTP_Port 21

--- GENERAL --

Number of cache files to save (2 to 4096, default 64)

CacheSize 64

Set to one to disable disk cache, 0 (the default) enables cache

NoCache 0

Set to one to disable sending and receiving cookies

NoCookies 0

--- DEBUGGING --

310 APPENDIX A. FILE FORMATS

Set this to one to print extended status messages on terminal screen

(default 0)

DebugMode 0

Set this to one to print transaction headers to terminal screen

(default 0)

PrintTransact 0

Debugging mode for images

0 Disable debugging mode (the default)

1 Load local images after document is displayed

2 Display local images progressively after document is displayed

LocalImageTestMode 0

Issue warnings about bad HTML syntax to terminal (1) or not (0, the default)

BadHTMLwarnings 0

A.3 Example Data Files

The following circuits are examples. There are a number of example files available with the WRspice

distribution. These are normally found in /usr/local/share/xictools/wrspice/examples.

A.3.1 Circuit 1: Simple Differential Pair

The following file determines the dc operating point of a simple differential pair. In addition, the ac
small-signal response is computed over the frequency range 1Hz to 100MHz.

Simple differential pair.

vcc 7 0 12

vee 8 0 -12

vin 1 0 ac 1

rs1 1 2 1k

rs2 6 0 1k

q1 3 2 4 mod1

q2 5 6 4 mod1

rc1 7 3 10k

rc2 7 5 10k

re 4 8 10k

.model mod1 npn bf=50 vaf=50 is=1.E-12 rb=100 cjc=.5pf tf=.6ns

.ac dec 10 1 100meg

.end

A.3.2 Circuit 2: MOS Output Characteristics

The following file computes the output characteristics of a MOSFET device over the range 0-10V for
VDS and 0-5V for VGS.

A.3. EXAMPLE DATA FILES 311

MOS output characteristics

.options node nopage

vds 3 0

vgs 2 0

m1 1 2 0 0 mod1 l=4u w=6u ad=10p as=10p

.model mod1 nmos vto=-2 nsub=1.0e15 uo=550

* vids measures Id, we could have used Vds, but Id would be negative

vids 3 1

.dc vds 0 10 .5 vgs 0 5 1

.end

A.3.3 Circuit 3: Simple RTL Inverter

The following file determines the dc transfer curve and the transient pulse response of a simple RTL
inverter. RTL was an early logic family which died out in the early 1970’s. We could not think of
anything more archaic, as WRspice does not contain a vacuum tube model.

The input is a pulse from 0 to 5 Volts with delay, rise, and fall times of 2ns and a pulse width of
30ns. The transient interval is 0 to 100ns, with printing to be done every nanosecond.

Simple Resistor-Transistor Logic (RTL) inverter

vcc 4 0 5

vin 1 0 pulse 0 5 2ns 2ns 2ns 30ns

rb 1 2 10k

q1 3 2 0 q1

rc 3 4 1k

.model q1 npn bf 20 rb 100 tf .1ns cjc 2pf

.dc vin 0 5 0.1

.tran 1ns 100ns

.end

A.3.4 Circuit 4: Four-Bit Adder

The following file simulates a four-bit binary adder, using several subcircuits to describe various pieces
of the overall circuit.

ADDER - 4 BIT ALL-NAND-GATE BINARY ADDER

*

*** SUBCIRCUIT DEFINITIONS

.SUBCKT NAND 1 2 3 4

*NODES: INPUT(2), OUTPUT, VCC

Q1 9 5 1 QMOD

D1CLAMP 0 1 DMOD

Q2 9 5 2 QMOD

D2CLAMP 0 2 DMOD

RB 4 5 4K

R1 4 6 1.6K

Q3 6 9 8 QMOD

R2 8 0 1K

312 APPENDIX A. FILE FORMATS

RC 4 7 130

Q4 7 6 10 QMOD

DVBEDROP 10 3 DMOD

Q5 3 8 0 QMOD

.ENDS NAND

.SUBCKT ONEBIT 1 2 3 4 5 6

*NODES: INPUT(2), CARRY-IN, OUTPUT, CARRY-OUT, VCC

X1 1 2 7 6 NAND

X2 1 7 8 6 NAND

X3 2 7 9 6 NAND

X4 8 9 10 6 NAND

X5 3 10 11 6 NAND

X6 3 11 12 6 NAND

X7 10 11 13 6 NAND

X8 12 13 4 6 NAND

X9 11 7 5 6 NAND

.ENDS ONEBIT

.SUBCKT TWOBIT 1 2 3 4 5 6 7 8 9

*NODES: INPUT - BIT0(2) / BIT1(2), OUTPUT - BIT0 / BIT1,

* CARRY-IN, CARRY-OUT, VCC

X1 1 2 7 5 10 9 ONEBIT

X2 3 4 10 6 8 9 ONEBIT

.ENDS TWOBIT

*

.SUBCKT FOURBIT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

*NODES: INPUT - BIT0(2) / BIT1(2) / BIT2(2) / BIT3(2),

* OUTPUT - BIT0 / BIT1 / BIT2 / BIT3, CARRY-IN, CARRY-OUT, VCC

X1 1 2 3 4 9 10 13 16 15 TWOBIT

X2 5 6 7 8 11 12 16 14 15 TWOBIT

.ENDS FOURBIT

*

*** DEFINE NOMINAL CIRCUIT

*

.MODEL DMOD D

.MODEL QMOD NPN(BF=75 RB=100 CJE=1PF CJC=3PF)

VCC 99 0 DC 5V

VIN1A 1 0 PULSE(0 3 0 10NS 10NS 10NS 50NS)

VIN1B 2 0 PULSE(0 3 0 10NS 10NS 20NS 100NS)

VIN2A 3 0 PULSE(0 3 0 10NS 10NS 40NS 200NS)

VIN2B 4 0 PULSE(0 3 0 10NS 10NS 80NS 400NS)

VIN3A 5 0 PULSE(0 3 0 10NS 10NS 160NS 800NS)

VIN3B 6 0 PULSE(0 3 0 10NS 10NS 320NS 1600NS)

VIN4A 7 0 PULSE(0 3 0 10NS 10NS 640NS 3200NS)

VIN4B 8 0 PULSE(0 3 0 10NS 10NS 1280NS 6400NS)

X1 1 2 3 4 5 6 7 8 9 10 11 12 0 13 99 FOURBIT

RBIT0 9 0 1K

RBIT1 10 0 1K

RBIT2 11 0 1K

RBIT3 12 0 1K

RCOUT 13 0 1K

*

A.3. EXAMPLE DATA FILES 313

*** (FOR THOSE WITH MONEY (AND MEMORY) TO BURN)

* Ah, the good olde days...

.TRAN 1NS 6400NS

.END

A.3.5 Circuit 5: Transmission Line Inverter

The following file simulates a transmission line inverter. Two transmission line elements are required
since two propagation modes are excited. In the case of a coaxial line, the first line (t1) models the
inner conductor with respect to the shield, and the second line (t2) models the shield with respect to
the outside world.

transmission-line inverter

v1 1 0 pulse(0 1 0 0.1N)

r1 1 2 50

x1 2 0 0 4 tline

r2 4 0 50

.subckt tline 1 2 3 4

t1 1 2 3 4 z0=50 td=1.5ns

t2 2 0 4 0 z0=100 td=1ns

.ends tline

.tran 0.1ns 20ns

.end

A.3.6 Circuit 6: Function and Table Demo

Below is a file which illustrates some features exclusive to WRspice for specifying the output of sources.

WRspice function and table demo

*

* WRspice allows arbitrary functional dependence in sources. This

* file demonstrates some of the capability.

*

* v1 is numerically equal to the exponentiation of

* 2 times the sine. "x" is replaced by the time variable.

v1 1 0 exp(2*sin(6.28e9*x))

r1 1 0 1

*

* v2 obtains values from table t1

v2 2 0 table(t1, time)

r2 2 0 1

.table t1 0 0 100p .1 500p 0 750p .2 1000p 0

*

* v3 is a 0-1 ramp

v3 3 0 pwl(0 0 1n 1)

r3 3 0 1

*

* e1 illustrates use of sub-tables. x is the voltage from v3

e1 4 0 3 0 table(t2, x)

314 APPENDIX A. FILE FORMATS

* below is an alternative equivalent form for e1

*e1 4 0 t2(v(3))

r4 4 0 1

.table t2 0 table t3 .5 table t4 .75 .75 1 0

.table t3 0 0 .25 1 .5 0

.table t4 0 0 .5 0 .625 1 .75 .75, x)

*

* e2 produces the same output as e1, but uses a PWL statement.

* when the controlling nodes are given, pwl uses the control source,

* and not time when used in e,f,g,h sources

e2 5 0 3 0 pwl(0 0 .25 1 .5 0 .625 1 .75 .75 1 0)

r5 5 0 1

*

.tran 1p 1n

* type "run", then "plot v(1) v(2) v(3) v(4)"

.end

A.3.7 Circuit 7: MOS Convergence Test

Below is an example circuit that illustrates some of the new features, and some older features perhaps
not widely appreciated. This also served as a test for improving MOS convergence. To run a convergence
test:

1. Source this circuit.

2. Press the siminterface button in the Debug tool.

3. Type “set value1 = mult”.

4. Type “loop .5 2.5 .1 op”.

This runs operating point analysis for M values from .5 to 2.5, and displays a little plot of the
convergence process. In the display, ‘+’ means an increasing gmin step, ‘.’ is a source step, ‘-’ is a
decreasing gmin step.

Note that 100 nS is too coarse to get a decent looking plot with BSIM devices. Use “tran 1n 10u”
in that case, since the circuit seems to be oscillating at very high frequency.

mosamp2 - mos amplifier - transient

.options abstol=10n vntol=10n noopiter mult=2 nqs=1 reltol=1e-4

*.op

.tran 0.1us 10us

.plot tran v(20) v(66)

* set below to 0 for old MOS model

.param bsim = 1

.if bsim = 1

m1 15 15 1 32 n1 w=88.9u l=25.4u m=$mult nqsmod=$nqs

m2 1 1 2 32 n1 w=12.7u l=266.7u m=$mult nqsmod=$nqs

m3 2 2 30 32 n1 w=88.9u l=25.4u m=$mult nqsmod=$nqs

m4 15 5 4 32 n1 w=12.7u l=106.7u m=$mult nqsmod=$nqs

m5 4 4 30 32 n1 w=88.9u l=12.7u m=$mult nqsmod=$nqs

A.3. EXAMPLE DATA FILES 315

m6 15 15 5 32 n1 w=44.5u l=25.4u m=$mult nqsmod=$nqs

m7 5 20 8 32 n1 w=482.6u l=12.7u m=$mult nqsmod=$nqs

m8 8 2 30 32 n1 w=88.9u l=25.4u m=$mult nqsmod=$nqs

m9 15 15 6 32 n1 w=44.5u l=25.4u m=$mult nqsmod=$nqs

m10 6 21 8 32 n1 w=482.6u l=12.7u m=$mult nqsmod=$nqs

m11 15 6 7 32 n1 w=12.7u l=106.7u m=$mult nqsmod=$nqs

m12 7 4 30 32 n1 w=88.9u l=12.7u m=$mult nqsmod=$nqs

m13 15 10 9 32 n1 w=139.7u l=12.7u m=$mult nqsmod=$nqs

m14 9 11 30 32 n1 w=139.7u l=12.7u m=$mult nqsmod=$nqs

m15 15 15 12 32 n1 w=12.7u l=207.8u m=$mult nqsmod=$nqs

m16 12 12 11 32 n1 w=54.1u l=12.7u m=$mult nqsmod=$nqs

m17 11 11 30 32 n1 w=54.1u l=12.7u m=$mult nqsmod=$nqs

m18 15 15 10 32 n1 w=12.7u l=45.2u m=$mult nqsmod=$nqs

m19 10 12 13 32 n1 w=270.5u l=12.7u m=$mult nqsmod=$nqs

m20 13 7 30 32 n1 w=270.5u l=12.7u m=$mult nqsmod=$nqs

m21 15 10 14 32 n1 w=254u l=12.7u m=$mult nqsmod=$nqs

m22 14 11 30 32 n1 w=241.3u l=12.7u m=$mult nqsmod=$nqs

m23 15 20 16 32 n1 w=19u l=38.1u m=$mult nqsmod=$nqs

m24 16 14 30 32 n1 w=406.4u l=12.7u m=$mult nqsmod=$nqs

m25 15 15 20 32 n1 w=38.1u l=42.7u m=$mult nqsmod=$nqs

m26 20 16 30 32 n1 w=381u l=25.4u m=$mult nqsmod=$nqs

m27 20 15 66 32 n1 w=22.9u l=7.6u m=$mult nqsmod=$nqs

.else

m1 15 15 1 32 n1 w=88.9u l=25.4u m=$mult

m2 1 1 2 32 n1 w=12.7u l=266.7u m=$mult

m3 2 2 30 32 n1 w=88.9u l=25.4u m=$mult

m4 15 5 4 32 n1 w=12.7u l=106.7u m=$mult

m5 4 4 30 32 n1 w=88.9u l=12.7u m=$mult

m6 15 15 5 32 n1 w=44.5u l=25.4u m=$mult

m7 5 20 8 32 n1 w=482.6u l=12.7u m=$mult

m8 8 2 30 32 n1 w=88.9u l=25.4u m=$mult

m9 15 15 6 32 n1 w=44.5u l=25.4u m=$mult

m10 6 21 8 32 n1 w=482.6u l=12.7u m=$mult

m11 15 6 7 32 n1 w=12.7u l=106.7u m=$mult

m12 7 4 30 32 n1 w=88.9u l=12.7u m=$mult

m13 15 10 9 32 n1 w=139.7u l=12.7u m=$mult

m14 9 11 30 32 n1 w=139.7u l=12.7u m=$mult

m15 15 15 12 32 n1 w=12.7u l=207.8u m=$mult

m16 12 12 11 32 n1 w=54.1u l=12.7u m=$mult

m17 11 11 30 32 n1 w=54.1u l=12.7u m=$mult

m18 15 15 10 32 n1 w=12.7u l=45.2u m=$mult

m19 10 12 13 32 n1 w=270.5u l=12.7u m=$mult

m20 13 7 30 32 n1 w=270.5u l=12.7u m=$mult

m21 15 10 14 32 n1 w=254u l=12.7u m=$mult

m22 14 11 30 32 n1 w=241.3u l=12.7u m=$mult

m23 15 20 16 32 n1 w=19u l=38.1u m=$mult

m24 16 14 30 32 n1 w=406.4u l=12.7u m=$mult

m25 15 15 20 32 n1 w=38.1u l=42.7u m=$mult

m26 20 16 30 32 n1 w=381u l=25.4u m=$mult

m27 20 15 66 32 n1 w=22.9u l=7.6u m=$mult

.endif

316 APPENDIX A. FILE FORMATS

cc 7 9 40pf

cl 66 0 70pf

vin 21 0 AC pulse(0 5 1ns 1ns 1ns 5us 10us)

vccp 15 0 dc +15

vddn 30 0 dc -15

vb 32 0 dc -20

.if bsim

.model n1 nmos(level=8 capmod=3)

.else

.model n1 nmos(nsub=2.2e15 uo=575 ucrit=49k uexp=0.1 tox=0.11u xj=2.95u

+ level=2 cgso=1.5n cgdo=1.5n cbd=4.5f cbs=4.5f ld=2.4485u nss=3.2e10

+ kp=2e-5 phi=0.6)

.endif

A.3.8 Circuit 8: Verilog Pseudo-Random Sequence

This example illustrates use of a .verilog block to generate a digital signal, that is then interfaced to
and processed by a conventional SPICE circuit. The digital signal is a 511 step pseudo-random sequence,
which is converted to a voltage and filtered.

* WRspice pseudo-random bit sequence demo

v1 1 0 a/255-1

r1 1 2 100

c1 2 0 10p

.tran 1p 10n

.plot tran v(1) v(2)

.verilog

module prbs;

reg [8:0] a, b;

reg clk;

integer cnt;

initial

begin

a = 9’hff;

clk = 0;

cnt = 0;

$monitor("%d", cnt, "%b", a, a[0]);

end

always

#5 clk = ~clk;

always

@(posedge clk)

begin

a = { a[4]^a[0], a[8:1] };

if (a == 9’hff)

$stop;

A.3. EXAMPLE DATA FILES 317

cnt = cnt + 1;

end

endmodule

.endv

A.3.9 Circuit 9: Josephson Junction I-V Curve

WRspice jj I-V curve demo

*

* One can plot a pretty decent iv curve using transient analysis.

* This will show the differences between the various model options.

*

b1 1 0 jj1 control=v2

v1 2 0 pwl(0 0 2n 70m 4n 0 5n 0)

r1 2 1 100

*

* for rtype=4, vary v2 between 0 and 1 for no gap to full gap

v2 3 0 .5

*

r2 3 0 1

*

* It is interesting to set rtype and delv to different values, and note

* the changes.

*

*Nb 1000 A/cm2 area = 30 square microns

.model jj1 jj(rtype=4,cct=1,icon=10m,vg=2.8m,delv=.1m,

+ icrit=0.3m,r0=100,rn=5.4902,cap=1.14195p)

.tran 5p 5n

* type "run", then "plot -b v(1) (-v1#branch)"

.end

A.3.10 Circuit 10: Josephson Gap Potential Modulation

WRspice jj qp modulation demo

*

* The rtype=4 option of the Josephson model causes the gap potential

* to scale with the external "control current" absolute value. For

* unit control current (1 Amp) or larger, the full potential is used,

* otherwise it scales linearly to zero. The transfer function is defined

* externally with controlled sources, as below. The approximation

* Vg = Vg0*(1-t**4) is pretty good, except near t = 1 (T = Tc, t = T/Tc).

* The actual transfer function is left to the user - in the example below,

* the ambient temperature is 7K, Tc=9.2K, and 1mv of "input" causes 1K

* temperature shift.

*

* For amusement, change cct=1 to cct=0 below. This runs much more quickly

* as critical current is set to zero.

*

318 APPENDIX A. FILE FORMATS

b1 1 0 jj1 control=v2

v1 2 0 pulse(0 35m 10p 10p)

r1 2 1 100

*

v2 3 0

g1 3 0 4 0 function 1 - (1000*x+7)/9.2)^4

v4 4 0 pulse(-1m 1m 10p 10p 10p 20p 60p)

*

*Nb 1000 A/cm2 area = 30 square microns

.model jj1 jj(rtype=4,cct=1,icon=10m,vg=2.8m,delv=.1m,

+ icrit=0.3m,r0=100,rn=5.4902,cap=1.14195p)

.tran 1p 500p uic

* type "run", then plot v(1) and v(4) to see the gap shift and input

.end

Appendix B

Utility Programs

The WRspice distribution provides a few supplemental utility and accessory programs.

B.1 The multidec Utility: Coupled Lossy Transmission Lines

The standalone program multidec produces a subcircuit for multiconductor lossy transmission lines in
terms of uncoupled (single) simple lossy lines. This decomposition is valid only if the following hold:

1. The electrical parameters (R, G, Cs, Cm, Ls, Lm) of all wires are identical and independent of
frequency.

2. Each line is coupled only to its (maximum 2) nearest neighbors.

The subcircuit is sent to the standard output and is intended to be included in an input file.

The command-line options for multidec are as follows:

-l<self-inductance Ls>
-c<self-capacitance Cs>
-r<series-resistance R>
-g<parallel-conductance G>
-k<coeff-of-inductive-coupling K>
-x<mutual-capacitance Cm>
-o<subckt-name>
-n<number-of-conductors>
-L<length>

The inductive coupling coefficient K is the ratio of Lm to Ls. Values for -l, -c, -o, -n and -L must be
specified.

Example:

multidec -n4 -l9e-9 -c20e-12 -r5.3 -x5e-12 -k0.7 -otest -L5.4

This utility was written by J.S. Roychowdhury for use with the lossy transmission line model [13].

319

320 APPENDIX B. UTILITY PROGRAMS

B.2 The printtoraw Utility: Print to Rawfile Conversion

The printtoraw program is a stand-alone utility provided with the WRspice distribution. This converts
the data in files produced by the print command using output redirection into the rawfile format, which
can be plotted. This works only for print files in the standard columnar form.

Usage: printtoraw [printfile]

The argument, if given, is assumed to be a path to a file that was produced by the WRspice print
command through redirection. If no argument is given, the standard input is read. The data are
converted to rawfile format and dumped to the standard output.

Example:

wrspice> run

wrspice> print v(1) v(2) v(3) > myfile

wrspice> quit

bash> printtoraw myfile > myfile.raw

wrspice> load myfile.raw

wrspice> plot all

B.3 The proc2mod Utility: BSIM1 Model Generation

This utility, provided with SPICE3, produces a set of BSIM1 models from process-dependent data
provided in a “process” file. An example process (.pro) file is provided with the WRspice examples.
This utility was written by J. Pierret [3], and the reference presumably provides more information.

B.4 The wrspiced Daemon: Remote SPICE Controller

WRspice can be accessed and run from a remote system for asynchronous simulation runs, for assistance
in computationally intensive tasks such as Monte Carlo analysis, and as a simulator for the Xic graphical
editor. This is made possible through a daemon (background) process which controls WRspice on the
remote machine. The daemon has the executable name “wrspiced”, and should be running on the
remote machine. This can be initiated in the system startup procedure, or manually. Generally, any
user can start wrspiced, but only one daemon can be running on the host computer.

The wrspiced program is part of the WRspice distribution, and is installed in the same directory
as the wrspice executable. The daemon manages the queue of submitted jobs and responses, and
maintains the communications port. The wrspiced daemon will establish itself on a port, and wait for
client messages.

B.4.1 SPICE Server Configuration

There is little or no configuration required to run wrspiced, but there are a few basic prerequisites. Our
assumption is that WRspice is installed on a network-reachable remote computer (the “SPICE server”),

B.4. THE WRSPICED DAEMON: REMOTE SPICE CONTROLLER 321

and we wish to submit jobs to this WRspice from within Xic, or from within WRspice running on local
computers (the ”clients”).

The SPICE server must have WRspice installed, and WRspice must be licensed to run on the server.
As a prerequisite, WRspice should operate on the SPICE server host in the normal way.

Historically, wrspiced has used the service name “spice” and port number 3004. Releases 3.2.8 and
later use the service name “wrspice” instead of “spice”, and use port number 6114 by default. The
port 6114 is registered with IANA for this service.

The system services database is represented by the contents of the file /etc/services in simple
installations. If using NIS, then the system will get its services information from elsewhere. A system
administrator can add service names and port assignments to this database. The wrspiced program
does not require this.

B.4.2 Starting the Daemon

The wrspiced program command line has the following form:

wrspiced [-fg] [-l logfile] [-p program] [-m maxjobs] [-t port]

There are five optional arguments.

-fg

If given, the wrspiced program will remain in the foreground (i.e., not become a “daemon”), but
will service requests normally. This may be useful for debugging purposes.

-l logfile
The logfile is a path to a file that will receive status messages from wrspiced. The default is
the value of the SPICE DAEMONLOG environment variable if set when the program is started, or
/tmp/wrspiced.log.

-p program
This specifies the WRspice program to run, in case for some reason the wrspice binary has been
renamed, or wrspice is not in the expected location. This overrides the values of the SPICE PATH
and SPICE EXEC DIR environment variables, which can also be used to set the path to the binary.
The default is “/usr/local/share/xictools/bin/wrspice”.

-m maxjobs
This sets the maximum number of jobs that the server will allow to be running at the same time.
The default is 5.

-t port
This sets the port to be used by the daemon, and overrides any port set in the services database.
Clients must use the same port number to connect to the SPICE server.

The daemon is started by simply typing the command. If a machine is to operate continuously as
a SPICE server, it is recommended that the wrspiced daemon be started in the system initialization
scripts. The daemon will run until explicitly killed by a signal, or the machine is halted. When the
wrspiced process terminates, any WRspice processes under management will also be killed. The daemon
can be terminated, by the process owner, by giving the command “ps aux | grep wrspiced” and

322 APPENDIX B. UTILITY PROGRAMS

noting the process id (pid) number of the running wrspiced process, and then issuing “kill pid” using
this pid number.

It may be necessary to become root before starting wrspiced, as on some systems connection to the
port will otherwise be refused due to permission requirements. Starting by root is also required if the
log file is to be written to a directory such as /var/log that requires root permission for writing.

B.4.3 Client Configuration

The port number used by the client must be the same as that used for the server. As for the server, if not
supplied the port number will be resolved if possible in the services database (e.g., the /etc/services

file), and will revert to a default if not found.

In Xic and WRspice, the port number to use can be specified with the host name, by appending the
number following a colon, i.e.,

hostname[:port]

A WRspice server can receive jobs from Xic, and from WRspice (rspice command). Both programs
have means by which the SPICE server can be specified from within the program. One means common
to both programs is through use of the SPICE HOST environment variable. The variable should be set to
the host name of the SPICE server, as resolvable by the client, followed by the optional colon and port
number. When set, Xic will by default use this server for SPICE jobs initiated with the Run button in
the side menu, and WRspice will use this host in the rspice command. In a situation where the SPICE
server provides the only SPICE available, the SPICE HOST variable should be set in the user’s shell
startup script. In WRspice the rhost shell variable and the rhost command can also be used to specify
the remote host, and these override any value set in the environment.

Note: In Xic, when WRspice connects, a message is printed in the terminal window similar to

Stream established to wrspice://chaucer, port 4573.

The “port” in this case is not the wrspiced port discussed above, but is a transient port created for the
process.

Bibliography

[1] A. Vladimirescu and S. Liu, The Simulation of MOS Integrated Circuits Using SPICE2, ERL Memo
No. ERL M80/7, Electronics Research Laboratory, University of California, Berkeley, Oct. 1980.

[2] B. J. Sheu, D. L. Scharfetter, and P. K. Ko, SPICE2 Implementation of BSIM, ERL Memo No.
ERL M85/42, Electronics Research Laboratory, University of California, Berkeley, May 1985.

[3] J. R. Pierret, A MOS Parameter Extraction Program for the BSIM Model, ERL Memo Nos. ERL
M84/99 and M84/100, Electronics Research Laboratory, University of California, Berkeley, Nov.
1984.

[4] Min-Chie Jeng, Design and Modeling of Deep-Submicrometer MOSFETs, ERL Memo Nos. ERL
M84/99 and ERL M90/90, Electronics Research Laboratory, University of California, Berkeley,
October 1990.

[5] Soyeon Park, Analysis and SPICE implementation of High Temperature Effects on MOSFET, Mas-
ter’s Thesis, University of California, Berkeley, December 1986.

[6] Clement Szeto, Simulator of Temperature effects in MOSFETs (STEIM), Master’s Thesis, Univer-
sity of California, Berkeley, May 1988.

[7] A. E. Parker and D. J. Skellern, An Improved FET Model for Computer Simulators, IEEE Trans.
CAD, vol. 9, no.5, pp. 551-553, May 1990.

[8] Y. Cheng, M. Chan, K. Hui, M-C Jeng, Z. Liu, J. Huang, K. Chen, J. Chen, R. Tu, P. Ko and C.
Hu, BSIM3v3 Manual, Department of Electrical Engineering and Computer Sciences, University of
California, Berkeley, 1996.

[9] R. Saleh and A. Yang, Editors, Simulation and Modeling, IEEE Circuits and Devices, vol. 8, no. 3,
pp. 7-8 and 49, May 1992.

[10] H. Statz et al., GaAs FET Device and Circuit Simulation in SPICE, IEEE Transactions on Electron
Devices, Vol. 34, Number 2, February 1987 pp. 160-169.

[11] R. E. Jewett, Josephson Junctions in SPICE2G5, ERL Memo, Electronics Research Laboratory,
University of California, Berkeley, 1982.

[12] S. R. Whiteley, Josephson Junctions in SPICE3, IEEE Trans. Magn., vol. 27, no. 2, pp. 2902-2905,
March 1991.

[13] J. S. Roychowdhury and D. O. Pederson, Efficient Transient Simulation of Lossy Interconnect, Proc.
DAC 91.

[14] Shen Lin and Ernest S. Kuh, Transient Simulation of Lossy Interconnect, Proc. DAC, pp 81-86,
1992.

323

324 BIBLIOGRAPHY

This page intentionally left blank.

Index

.ac line, 41

.adc line, 61

.check line, 60, 280

.checkall line, 60

.control line, 58

.dc line, 42

.disto line, 43

.elif line, 33

.else line, 33

.end line, 23

.endc line, 58, 280

.endif line, 33

.endl line, 25

.ends line, 38

.endv line, 61

.exec line, 58

.four line, 54

.global line, 27

.ic line, 27

.if line, 33

.inc line, 24

.include line, 24

.lib line, 25

.measure line, 54

.model, 64

.monte line, 60, 280, 293

.mosmap line, 26

.mozyrc file, 308

.newjob line, 23

.nodeset line, 28

.noexec line, 60

.noise line, 45

.op line, 46

.options line, 28

.param line, 32

.plot line, 53

.print line, 53

.probe line, 52

.pz line, 49

.save line, 52

.sens line, 49

.spinclude line, 24

.splib line, 25

.subckt line, 35

.table line, 30

.temp line, 31

.tf line, 50

.title line, 23

.tran line, 50

.verilog line, 61

.wrpasswd file, 128

.wrspiceinit file, 127
/width line, 54
@delta vector, 52

abs function, 174
abstol variable, 270
ac analysis, 8, 41
ac command, 214
acct variable, 276
acos function, 174
acosh function, 174
agauss function, 181
alias command, 201
alias substitution, 161
alter command, 215
analysis, 8

ac, 8, 41
dc, 8, 42
distortion, 9, 43
looping, 10
Monte Carlo, 10
noise, 9, 45
operating range, 10
pole-zero, 8, 49
sensitivity, 9, 49
transfer function, 8, 50
transient, 8, 50

appendwrite variable, 259
area parameter, 96
argc variable, 257
argv variable, 257
asciiplot command, 244
asin function, 174

325

326 INDEX

asinh function, 174
aspice command, 215
atan function, 175
atanh function, 175
aunif function, 180

batch mode, 119, 187
bipolar transistor instance, 100
bipolar transistor model, 100
break statement, 195
bug command, 251
bypass variable, 270

cache command, 216
capacitor, 66
capacitor model, 67
case sensitivity, 20, 120
cbrt function, 175
CCCS, 94
CCVS, 95
cd command, 202
cdump command, 196
ceil function, 175
check command, 216, 279

variables, 218
vectors, 218

checkiterate variable, 259, 281
chgtol variable, 270
Circuits tool, 12, 131, 135
cktvars variable, 257
codeblock command, 206
colorN variable, 263
Colors tool, 131, 135
colors, setting, 128
combine command, 244
combplot variable, 263
command completion, 160
command editing, 159
command interpretation, 163
command line options, 119–122

–class, 122
–name, 122
–no-xshm, 122
–sync, 122
-b, 119
-c, 120
-d, 120
-dnone, 120
-i, 120
-j, 120
-l, 120

-m, 121
-n, 121
-o, 121
-p, 121
-q, 121
-r, 121
-s, 121
-t, 121
-x, 122

command scripts, 163
Commands tool, 131, 135
comment line, 22
compose command, 234
concatenation character, 288
constants plot, 166
continue statement, 195
control blocks, 58, 187
control structures, 193
convergence, 10, 28
cos function, 175
cosh function, 175
cptime variable, 275
cross command, 235
Ctrl-D, 15
curplot variable, 263
curplotdate variable, 263
curplotname variable, 264
curplottitle variable, 264
current circuit, 12
current flow convention, 62
current plot, 165
current source, 78

daemon, wrspiced, 190
db function, 175
dc analysis, 8, 42
dc analysis, chained, 40
dc command, 221
dcmu variable, 270
Debug tool, 131, 135
debug variable, 277
defad variable, 270
defas variable, 270
define command, 235
defl variable, 270
deftype command, 236
defw variable, 270
delete command, 221
dependent source, 92
deriv function, 175
destroy command, 222

INDEX 327

dev variable, 276
device expressions, 79
device library, 6, 63
device models, 64
devload command, 222
devls command, 223
devmod command, 223
diff command, 236
diff abstol variable, 259
diff reltol variable, 259
diff vntol variable, 259
dimensions, vectors, 166
diode instance, 97
diode model, 97
display command, 237
DISPLAY environment variable, 119, 124, 129
display variable, 277
disto command, 224
distortion analysis, 9, 43
dollarcmt variable, 259
dontplot variable, 277
dowhile block, 194
dphimax variable, 270
dpolydegree variable, 175, 260
drag and drop, 129, 139
dump command, 224
dumpnodes command, 207

echo command, 202
echof command, 202, 294
edit command, 15, 207
EDITOR environment variable, 124
editor variable, 260
end statement, 196
environment

XTNETDEBUG, 124
environment variables, 122–126

DISPLAY, 124
EDITOR, 124
HOME, 124
setting, 122
SPICE ASCIIRAWFILE, 125
SPICE BUGADDR, 125
SPICE DAEMONLOG, 126
SPICE EDITOR, 124
SPICE EXEC DIR, 125
SPICE HLP PATH, 125
SPICE HOST, 126
SPICE INP PATH, 125
SPICE LIB DIR, 125
SPICE NEWS FILE, 125

SPICE OPTCHAR, 125
SPICE PATH, 125
SPICE TMP DIR, 125
TMPDIR, 125
XT AUTH MODE, 123
XT LICENSE PATH, 123
XT PREFIX, 124
XT SYSTEM MALLOC, 124
XT USE GTK THEMES, 124
XTLSERVER, 123

erf function, 175
erfc function, 175
errorlog variable, 260
example run, 16
executable comments, 60
exp function, 175
exp tran function, 87
exponential specification, 87
expression list, 183
expression substitution, 163

fft function, 175
file formats, 301

help files, 303
rawfile, 301

file manager, 138
File Selection window, 138
Files tool, 131, 135
filetype variable, 260
floor function, 176
Fonts tool, 131, 136
foreach block, 194
fourgridsize variable, 260
fourier command, 237
fpemode variable, 278
free command, 224
FreeBSD, 6

gamma function, 176
gauss function, 180
gauss tran function, 88
Gaussian random specification, 88
global nodes, 27
global substitution, 161
gmin variable, 271
gminfirst variable, 271
gminsteps variable, 271
goto statement, 195
gridsize variable, 264
gridstyle keyword

lingrid, 266

328 INDEX

loglog, 266
polar, 267
smith, 268
smithgrid, 268
xlog, 269
ylog, 269

gridstyle variable, 264
group variable, 264
GTK themes, 124

hardcopy command, 245
hardcopy drivers, 264
hcopycommand variable, 264
hcopydriver variable, 264
hcopyheight variable, 265
hcopylandscape variable, 265
hcopyresol variable, 265
hcopyrmdelay variable, 265
hcopywidth variable, 265
hcopyxoff variable, 266
hcopyyoff variable, 266
height variable, 258
help command, 251
help database, 158
help files, 303
Help menu, 132
help system, 11, 153
help viewer

Anchor Buttons, 157
Anchor Highlight, 157
Anchor Plain, 157
anchor styles, 157
Anchor Underline, 157
back, 155
Bad HTML Warnings, 157
Clear Cache, 157
cookies, 157
Delayed Images, 157
disk cache, 156
Don’t Cache, 157
Find Text, 156
forward, 155
Freeze Animations, 157
image formats, 157
Log Transactions, 158
No Images, 157
Open, 156
Open File, 156
Print, 156
Progressive Images, 157
Quit, 156

Reload, 156
Reload Cache, 157
Save, 156
Search, 156
Set Font, 156
Show Cache, 157
stop, 155
Sync Images, 157

helpinitxpos variable, 260
helpinitypos variable, 260
helppath variable, 260
helpreset command, 251
history command, 202
history substitution, 160
history variable, 258
HOME environment variable, 124
hspice variable, 254

if block, 195
ifft function, 176
ignoreeof variable, 258
im function, 176
implicit source, 211
independent source, 78
inductor, 68
initialization files, 127
input format, 19
installcmdfmt variable, 260
int function, 176
integ function, 176
interactive simulation, 12
interp tran function, 88
interplev variable, 271
interpolate function, 176
interpolation specification, 88
io redirection, 162
iplot command, 246
itl1 variable, 271
itl2 variable, 271
itl2gmin variable, 271
itl2src variable, 271
itl3 variable, 276
itl4 variable, 271
itl5 variable, 276

j function, 176
j0 function, 177
j1 function, 177
JFET instance, 102
JFET model, 103
jjaccel variable, 271

INDEX 329

jn function, 177
jobs command, 224
Josephson junction instance, 115
Josephson junction model, 116

KLU plug-in, 126

label statement, 195
length function, 177
let command, 14, 167, 237
license.host file, 127
limit function, 181
limpts variable, 276
limtim variable, 276
linearize command, 238
lingrid variable, 266
linplot variable, 266
list variable, 276
listing command, 208
ln function, 177
load command, 208
loadable device modules, 189, 222
log function, 177
log10 function, 177
loglog variable, 266
loop command, 224
LTRA model, 77
lvlcod variable, 276
lvltim variable, 276

mag function, 177
mail window, 144
MAPI, 145
mapkey command, 196
margin analysis, 60
math functions, 174
maxdata variable, 40, 271
maxord variable, 272
mean function, 177
measurement, 12
measurement interval, 55
measurement types, 56
measurements, 54
measurements, chained, 57
measurements, source reference, 58
memory management, 124
memory statistics, 129
memory use, 10
MESFET instance, 104
MESFET model, 105
method variable, 272
minbreak variable, 272

mod variable, 276
modelcard variable, 254
Monte Carlo analysis, 10, 280, 293

example, 294
MOSFET binning, 107
MOSFET defaults, 107
MOSFET instance, 105
MOSFET L/W selection, 107
MOSFET levels, 111
MOSFET model, 106
mplot command, 246, 294
mplot window, 150
mplot cur variable, 261
multi variable, 266
multidec program, 319
multidimensional vectors, 166
mutual inductor, 68

name field, 20
nfreqs variable, 261
noadjoint variable, 272
noasciiplotvalue variable, 266
noaskquit variable, 258
nobjthack variable, 254
nobreak variable, 266
nocc variable, 258
nocheckupdate variable, 261
noclobber variable, 258
node names, 20
node variable, 276
noedit variable, 258
noeditwin variable, 261
noerrwin variable, 258
noglob variable, 258
nogrid variable, 266
nointerp variable, 266
noise analysis, 9, 45
noise command, 226
noiter variable, 272
nojjtp variable, 272
noklu variable, 272
nomatsort variable, 272
nomod variable, 276
nomoremode variable, 258
nonomatch variable, 259
noopiter variable, 273
nopadding variable, 261
nopage variable, 261
noparse variable, 278
noplotlogo variable, 266
noprintscale variable, 261

330 INDEX

norm function, 177
noshellopts variable, 273
nosort variable, 259
nosubckt variable, 278
notrapcheck variable, 273
number field, 21
numdgt variable, 261

off parameter, 10, 96
ogauss function, 177
oldlimit variable, 273
op command, 226
operating range analysis, 10, 279

checkDEL1, 280
checkDEL2, 280
checkFAIL, 281
checkiterate, 281
checkN1, 281
checkN2, 281
checkPNTS, 280
checkSTP1, 280
checkSTP2, 280
checkVAL1, 280
checkVAL2, 280
example, 288
file format, 285
finding endpoints, 284
opmax1, 281
opmax2, 281
opmin1, 281
opmin2, 281
r scale, 281
range, 281
value, 281
value1, 282
value2, 282

operating range files, 280
operators, 172
option character, 119
options, 28
opts variable, 277

p pseudo-function, 169
parhier variable, 273
passwd command, 198
password file, 128
pause command, 203
pedigree, 6
ph function, 178
pick command, 239
pivrel variable, 274

pivtol variable, 274
platforms, 6
plot command, 13, 248
Plot Defs tool, 132, 135
plot description, 165
plot panel, 145
plot text editing, 147
plot text selection, 147
plot to file, 151
plot window, 145
plot zoom in, 147
plot catchar variable, 254
plotgeom variable, 267
plotposn variable, 267
plots, 15
Plots tool, 132, 137
plots variable, 267
plotstyle keyword

combplot, 263
lineplot, 266
pointplot, 267

plotstyle variable, 267
plotting, 11
pointchars variable, 267
pointplot variable, 267
polar variable, 267
pole-zero analysis, 8, 49
poly specification, 84
polydegree variable, 267
polysteps variable, 268
pos function, 178
post variable, 277
pow function, 182
print command, 15, 208
print help text, 156
print panel, 150
printtoraw program, 320
proc2mod program, 320
program variable, 278
prompt variable, 259
pulse specification, 89
pulse tran function, 89
PWL specification, 90
pwl tran function, 90
pwr function, 182
pz command, 227

qhelp command, 252
quit command, 252
quoting, 161

random variable, 261

INDEX 331

rawfile, 15
rawfile ASCII format, 301
rawfile binary format, 302
rawfile options, 301
rawfile variable, 262
rawfile variables, 301
rawfileprec variable, 262
re function, 178
rehash command, 203
reltol variable, 274
renumber variable, 274
repeat block, 194
reset command, 227
resistor, 69
resistor model, 70
resume command, 227
rhost command, 227
rhost variable, 262
rms function, 178
rnd function, 178
rprogram variable, 262
rspice command, 228
run command, 13, 228
rusage command, 252

accept, 252
elapsed, 252
faults, 252
loadtime, 252
lutime, 252
rejected, 252
solvetime, 252
space, 253
time, 253
totaltime, 253
totiter, 253
traniter, 253
tranpoints, 253
transolvetime, 253
trantime, 253

save command, 228
save help text, 156
savecurrent variable, 274
scale factors, 21
scaletype keyword

group, 264
multi, 266
single, 268

scaletype variable, 268
sced command, 209
scripts, 12, 163, 187, 189

search help database, 156
seed command, 239
semicolon termination, 162
sens command, 229
sensitivity analysis, 9, 49
server mode, 187
set and let, 184
set command, 14, 203
setcase command, 198
setcirc command, 12, 230
setfont command, 198
setplot command, 239
setrdb command, 199
setscale command, 240
settype command, 241
sffm tran function, 90
sgn function, 178
shell, 12, 159
shell comand, 204
shell commands, 201
shell scripts, 164
Shell tool, 132, 135
shell variable expansion, 22
shell variables, 162
shift command, 204
show command, 230
sign function, 182
Sim Defs tool, 132, 135
sin function, 178
sin tran function, 91
sine pulse specification, 91
sine specification, 91
single frequency FM specification, 90
single quoted expressions, 31
single variable, 268
single-quote expansion, 22
single-quoted expressions, 22
sinh function, 178
smith variable, 268
smithgrid variable, 268
source, 78
source command, 12, 210
source expressions, 79
source, implicit, 211
sourcepath variable, 135, 259
sparse matrix package, 126
spec command, 242
spec catchar variable, 255
spectrace variable, 242, 262
specwindow variable, 242, 262
specwindoworder variable, 242, 263

332 INDEX

spice options, 28
spice3 variable, 274
SPICE ASCIIRAWFILE environment variable, 125
SPICE BUGADDR environment variable, 125
SPICE DAEMONLOG environment variable, 126
SPICE EDITOR environment variable, 124
SPICE EXEC DIR environment variable, 125
SPICE HLP PATH environment variable, 125
SPICE HOST environment variable, 126
SPICE INP PATH environment variable, 125
SPICE LIB DIR environment variable, 125
SPICE NEWS FILE environment variable, 125
SPICE OPTCHAR environment variable, 119, 125
SPICE PATH environment variable, 125
SPICE TMP DIR environment variable, 125
spicepath variable, 263
spulse tran function, 91
sqrt function, 178
srcsteps variable, 274
startup file, 127, 128
state command, 231
status command, 231
step command, 231
steptype variable, 274
stop command, 232
strcmp command, 196
strictnumparse variable, 255
subc catchar variable, 36, 255
subc catmode variable, 36, 255
subcircuit call, 39
subcircuit declaration, 35
subcircuit expansion, 36
subcircuit/model cache, 39
subcircuits, 35
subend variable, 256
subinvoke variable, 256
substart variable, 256
sum function, 178
switch, 71
switch model, 71

table reference specification, 92
table tran function, 92
tan function, 178
tanh function, 178
tbsetup command, 128
temp variable, 65, 275
temper variable, 170
temperature, 65

coefficient, 66
text editor, 140

text entry windows, 132
text-mode interface, 11
tf command, 232
themes, 124
ticmarks variable, 268
title line, 22
title variable, 268
TMPDIR environment variable, 125
tnom variable, 65, 275
tool control window, 11, 129
Tools menu, 131
TRA model, 77
trace command, 233
Trace tool, 132, 137
tracing, 12
tran command, 233
tran functions, 85
tran functions, in expressions, 86
transfer function analysis, 8, 50
transient analysis, 8, 50
transmission line, 72
transmission line, lumped, 77
trantrace variable, 278
trapratio variable, 275
trtol variable, 275
trytocompact variable, 275

uic keyword, 62
unalias command, 204
undefine command, 243
unif function, 179
units variable, 263
units catchar variable, 256
unitvec function, 178
unixcom variable, 259
unlet command, 243
unset command, 205
Update button, 128
update command, 128, 199
updating WRspice, 128
urc, 77
URC model, 77
user interface setup commands, 196
user-defined functions, 86
usrset command, 205

var catchar variable, 257
variable expansion, 163
variable setting tools, 135
variable substitution, 22, 59, 162
variable types, 162

INDEX 333

Variables tool, 132, 137, 162
variables, shell, 162
VCCS, 93
VCVS, 93
vector description, 165
vector function, 179
vector indexing, 167
vector substitution, 163, 172
vectors, 14
Vectors tool, 15, 132, 138
vectors, dimension, 41
vectors, dimensions, 166
Verilog, 12
Verilog blocks, 61
Verilog interface, 61
Verilog-A, 189
version command, 253
virtual memory use, 10
vntol variable, 275
voltage source, 78

where command, 233
while block, 194
WR button, 129
write command, 212
wrspiced daemon, 190
wrspiced program, 320
wrspiceinit file, 127
wrupdate command, 200

X resources, 128
xcompress variable, 268
xdelta variable, 268
xeditor command, 212
xglinewidth variable, 268
xgmarkers variable, 268
xgraph command, 250
Xic, 6, 12
xindices variable, 269
xlabel variable, 269
xlimit variable, 269
xlog variable, 269
xmu variable, 275
XT LICENSE PATH environment variable, 123
XT PREFIX environment variable, 124
XT SYSTEM MALLOC environment variable, 124
XT USE GTK THEMES environment variable, 124
XTLSERVER environment variable, 123
XTNETDEBUG environment variable, 124

y0 function, 179
y1 function, 179

ydelta variable, 269
ylabel variable, 269
ylimit variable, 269
ylog variable, 269
yn function, 179
ysep variable, 269

334 INDEX

This page intentionally left blank.

